'

Search results

Found 1359 matches
Law of Conservation of Linear Momentum - 2 particles example

In classical mechanics, linear momentum or translational momentum (pl. momenta; SI unit kg m/s, or equivalently, N s) is the product of the mass and ... more

Mean anomaly at epoch

In celestial mechanics, the mean anomaly is an angle used in calculating the position of a body in an elliptical orbit in the classical two-body problem. ... more

Critical Buckling Stress of a Column with Buckling Coefficient

Column or pillar in architecture and structural engineering is a structural element that transmits, through compression, the weight of the structure above ... more

Worksheet 308

Astrology, that unlikely and vague pseudoscience, makes much of the position of the planets at the moment of one’s birth. The only known force a planet exerts on Earth is gravitational.

(a) Calculate the gravitational force exerted on a 4.20 kg baby by a 100 kg father 0.200 m away at birth (he is assisting, so he is close to the child).

(b) Calculate the force on the baby due to Jupiter if it is at its closest distance to Earth, some 6.29e+11 m away. How does the force of Jupiter on the baby compare to the force of the father on the baby?

Father’s gravitational force on the baby is:

Newton's law of universal gravitation

Jupiter’s gravitational force on the baby is:

Newton's law of universal gravitation
Division

(c) What should be the father’s weight, so that he exerts the same force on the baby as that of Jupiter? **
**this section is not included in the Reference material

Newton's law of universal gravitation

Discussion

Other objects in the room and the hospital building also exert similar gravitational forces. (Of course, there could be an unknown force acting, but scientists first need to be convinced that there is even an effect, much less that an unknown force causes it.)

Reference : OpenStax College,College Physics. OpenStax College. 21 June 2012.
http://openstaxcollege.org/textbooks/college-physics
Creative Commons License : http://creativecommons.org/licenses/by/3.0/

Dedicated to little Konstantinos

Relativistic kinetic energy of rigid bodies

In physics, the kinetic energy of an object is the energy that it possesses due to its motion. It is defined as the work needed to accelerate a body of a ... more

4th Equation of Motion for Rotation - Angular Velocity : time independent

In mathematical physics, equations of motion are equations that describe the behaviour of a physical system in terms of its motion as a function of ... more

Vis-Viva Equation - cirlcular orbit

In astrodynamics, the vis viva equation, also referred to as orbital energy conservation equation, is one of the fundamental equations that govern the ... more

Critical Damping Coefficient (related to the natural frequency)

A harmonic oscillator is a system that, when displaced from its equilibrium position, experiences a restoring force, proportional to the displacement. If a ... more

Moment of inertia of a solid cube ( Axis of rotation at the center of a face)

Moment of inertia is the mass property of a rigid body that defines the torque needed for a desired angular acceleration about an axis of rotation. Moment ... more

Mean Motion

In orbital mechanics, mean motion (represented by ) is a measure of how fast a satellite progresses around its elliptical orbit. The mean motion is the ... more

...can't find what you're looking for?

Create a new formula