'

Search results

Found 1003 matches
Worksheet 306

Calculate the force the biceps muscle must exert to hold the forearm and its load as shown in the figure below, and compare this force with the weight of the forearm plus its load. You may take the data in the figure to be accurate to three significant figures.


(a) The figure shows the forearm of a person holding a book. The biceps exert a force FB to support the weight of the forearm and the book. The triceps are assumed to be relaxed. (b) Here, you can view an approximately equivalent mechanical system with the pivot at the elbow joint

Strategy

There are four forces acting on the forearm and its load (the system of interest). The magnitude of the force of the biceps is FB, that of the elbow joint is FE, that of the weights of the forearm is wa , and its load is wb. Two of these are unknown FB, so that the first condition for equilibrium cannot by itself yield FB . But if we use the second condition and choose the pivot to be at the elbow, then the torque due to FE is zero, and the only unknown becomes FB .

Solution

The torques created by the weights are clockwise relative to the pivot, while the torque created by the biceps is counterclockwise; thus, the second condition for equilibrium (net τ = 0) becomes

Force (Newton's second law)
Torque
Force (Newton's second law)
Torque

Note that sin θ = 1 for all forces, since θ = 90º for all forces. This equation can easily be solved for FB in terms of known quantities,yielding. Entering the known values gives

Mechanical equilibrium - 3=3 Torque example

which yields

Torque
Addition

Now, the combined weight of the arm and its load is known, so that the ratio of the force exerted by the biceps to the total weight is

Division

Discussion

This means that the biceps muscle is exerting a force 7.38 times the weight supported.

Reference : OpenStax College,College Physics. OpenStax College. 21 June 2012.
http://openstaxcollege.org/textbooks/college-physics
Creative Commons License : http://creativecommons.org/licenses/by/3.0/

Thrust

Thrust is a reaction force described quantitatively by Newton’s second and third laws. When a system expels or accelerates mass in one direction, the ... more

Force (Newton's second law)

In physics, a force is any influence which tends to change the motion of an object.In other words, a force can cause an object with mass to change its ... more

Angular Acceleration

Torque, moment, or moment of force is the tendency of a force to rotate an object about an axis, fulcrum, or pivot.
Moment of inertia is the mass ... more

Speed of sound in sea water (Mackenzie empirical equation)

The speed of sound is the distance travelled per unit of time by a sound wave propagating through an elastic medium. The speed of sound in seawater depends ... more

Specific Impulse by weight

Specific impulse (usually abbreviated Isp) is a measure of the efficiency of rocket and jet engines. By definition, it is the impulse delivered per unit of ... more

Damping ratio ( related to damping coefficients)

Linear damping occurs when a potentially oscillatory variable is damped by an influence that opposes changes in it, in direct proportion to the ... more

Angular velocity

In physics, the angular velocity is defined as the rate of change of angular displacement and is a vector quantity (more precisely, a pseudovector) which ... more

Lorentz force

Lorentz force is the force applied on a charged particle, moving with velocity v, vertically into a magnetic field. A positively charged particle will be ... more

Volumetric flow rate

The volumetric flow rate is the volume of fluid which passes through a given surface per unit time. Fow velocity in fluid dynamics or drift velocity in ... more

...can't find what you're looking for?

Create a new formula

Search criteria:

Similar to formula
Category