'

Search results

Found 1230 matches
Weighted arithmetic mean

The weighted mean is similar to an arithmetic mean (the most common type of average), where instead of each of the data points contributing equally to the ... more

Gravitational Acceleration

Gravity gives weight to physical objects and causes them to fall toward the ground when dropped.
If Μ is a point mass or the mass of a sphere with ... more

Auger electron spectroscopy - Total yield

Auger electron spectroscopy is a common analytical technique used specifically in the study of surfaces and, more generally, in the area of materials ... more

Uniform gravitational field without air resistance (altitude)

Free fall is any motion of a body where its weight is the only force acting upon it. If gravity is the only influence acting, then the acceleration is ... more

Volumetric flow rate (parallel to the unit normal)

volumetric flow rate, (also known as volume flow rate, rate of fluid flow or volume velocity) is the volume of fluid which passes per unit time. The only ... more

Drag coefficient

Drag (sometimes called air resistance, a type of friction, or fluid resistance, another type of friction or fluid friction) refers to forces acting ... more

Dalton's law - Volume-based concentration

The formula provides a way to determine the volume-based concentration of any individual gaseous component.

Dalton’s law is not strictly ... more

Freefall in Uniform Gravitational Field with Air Resistance (velocity)

Free fall is any motion of a body where its weight is the only force acting upon it. In Uniform gravitational field with air resistance the air resistance ... more

Mass Ratio - Rockets

In aerospace engineering, mass ratio is a measure of the efficiency of a rocket. It describes how much more massive the vehicle is with propellant than ... more

Worksheet 306

Calculate the force the biceps muscle must exert to hold the forearm and its load as shown in the figure below, and compare this force with the weight of the forearm plus its load. You may take the data in the figure to be accurate to three significant figures.


(a) The figure shows the forearm of a person holding a book. The biceps exert a force FB to support the weight of the forearm and the book. The triceps are assumed to be relaxed. (b) Here, you can view an approximately equivalent mechanical system with the pivot at the elbow joint

Strategy

There are four forces acting on the forearm and its load (the system of interest). The magnitude of the force of the biceps is FB, that of the elbow joint is FE, that of the weights of the forearm is wa , and its load is wb. Two of these are unknown FB, so that the first condition for equilibrium cannot by itself yield FB . But if we use the second condition and choose the pivot to be at the elbow, then the torque due to FE is zero, and the only unknown becomes FB .

Solution

The torques created by the weights are clockwise relative to the pivot, while the torque created by the biceps is counterclockwise; thus, the second condition for equilibrium (net τ = 0) becomes

Force (Newton's second law)
Torque
Force (Newton's second law)
Torque

Note that sin θ = 1 for all forces, since θ = 90º for all forces. This equation can easily be solved for FB in terms of known quantities,yielding. Entering the known values gives

Mechanical equilibrium - 3=3 Torque example

which yields

Torque
Addition

Now, the combined weight of the arm and its load is known, so that the ratio of the force exerted by the biceps to the total weight is

Division

Discussion

This means that the biceps muscle is exerting a force 7.38 times the weight supported.

Reference : OpenStax College,College Physics. OpenStax College. 21 June 2012.
http://openstaxcollege.org/textbooks/college-physics
Creative Commons License : http://creativecommons.org/licenses/by/3.0/

...can't find what you're looking for?

Create a new formula