'

Search results

Found 1420 matches
Near branch of a hyperbola in polar coordinates with respect to a focal point

In mathematics, a hyperbola is a type of smooth curve, lying in a plane, defined by its geometric properties or by equations for which it is the solution ... more

Coolidge's formula (area of a general convex quadrilateral)

A quadrilateral is a polygon with four sides (or edges) and four vertices or corners. Coolidge’s formula calculates the area of a general convex ... more

Brahmagupta's formula (area of a cyclic quadrilateral )

In Euclidean geometry, a cyclic quadrilateral or inscribed quadrilateral is a quadrilateral whose vertices all lie on a single circle. This circle is ... more

Child's Law - related to anode voltage

First proposed by Clement D. Child in 1911, Child’s law states that the space-charge limited current (SCLC) in a ... more

Johnson-Kendall-Roberts (JKR) model of elastic contact between two spheres ( contact radius)

Contact mechanics is the study of the deformation of solids that touch each other at one or more points.When two solid surfaces are brought into close ... more

Cyclic quadrilateral (Ptolemy's theorem)

In Euclidean geometry, a cyclic quadrilateral or inscribed quadrilateral is a quadrilateral whose vertices all lie on a single circle. This circle is ... more

Elliptic paraboloid equation

The elliptic paraboloid is shaped like an oval cup and can have a maximum or minimum point. In a suitable coordinate system with three axes x, y, and z, it ... more

Miller indices calculator (Case of cubic structures)

Miller indices form a notation system in crystallography for planes in crystal (Bravais) lattices.
In particular, a family of lattice planes is ... more

Diffusion Coefficient for two different gases (related to Fick's laws)

Diffusion is the net movement of a substance (e.g., an atom, ion or molecule) from a region of high concentration to a region of low concentration. For two ... more

Worksheet 324

The main span of San Francisco’s Golden Gate Bridge is 1275 m long at its coldest. The bridge is exposed to temperatures ranging from –15ºC to 40ºC . (a) What is its change in length between these temperatures? Assume that the bridge is made entirely of steel.

Strategy

Use the equation for linear thermal expansion to calculate the change in length , ΔL . Use the coefficient of linear expansion, α ,for steel from Table 13.2, and note that the change in temperature, ΔT , is 55ºC

Thermal Expansion - Linear

(b) convert the change in temperature if Kelvin and Fahrenheit degrees. **
**this section is not included in the Reference material

Celsius <-> Kelvin
Celsius <-> Fahrenheit

Discussion

Although not large compared with the length of the bridge, this change in length is observable. It is generally spread over many expansion joints so that the expansion at each joint is small.

Reference : OpenStax College,College Physics. OpenStax College. 21 June 2012.
http://openstaxcollege.org/textbooks/college-physics
Creative Commons License : http://creativecommons.org/licenses/by/3.0/

...can't find what you're looking for?

Create a new formula