Search results

Found 1151 matches
Worksheet 306

Calculate the force the biceps muscle must exert to hold the forearm and its load as shown in the figure below, and compare this force with the weight of the forearm plus its load. You may take the data in the figure to be accurate to three significant figures.


(a) The figure shows the forearm of a person holding a book. The biceps exert a force FB to support the weight of the forearm and the book. The triceps are assumed to be relaxed. (b) Here, you can view an approximately equivalent mechanical system with the pivot at the elbow joint

Strategy

There are four forces acting on the forearm and its load (the system of interest). The magnitude of the force of the biceps is FB, that of the elbow joint is FE, that of the weights of the forearm is wa , and its load is wb. Two of these are unknown FB, so that the first condition for equilibrium cannot by itself yield FB . But if we use the second condition and choose the pivot to be at the elbow, then the torque due to FE is zero, and the only unknown becomes FB .

Solution

The torques created by the weights are clockwise relative to the pivot, while the torque created by the biceps is counterclockwise; thus, the second condition for equilibrium (net τ = 0) becomes

Force (Newton's second law)
Torque
Force (Newton's second law)
Torque

Note that sin θ = 1 for all forces, since θ = 90º for all forces. This equation can easily be solved for FB in terms of known quantities,yielding. Entering the known values gives

Mechanical equilibrium - 3=3 Torque example

which yields

Torque
Addition

Now, the combined weight of the arm and its load is known, so that the ratio of the force exerted by the biceps to the total weight is

Division

Discussion

This means that the biceps muscle is exerting a force 7.38 times the weight supported.

Reference : OpenStax College,College Physics. OpenStax College. 21 June 2012.
http://openstaxcollege.org/textbooks/college-physics
Creative Commons License : http://creativecommons.org/licenses/by/3.0/

Standard Error

The standard error (SE) is the standard deviation of the sampling distribution of a statistic. The term may also be used to refer to an estimate of that ... more

Graphic Standard Deviation

Is an approximate measure of sorting or variation of a particle size distribution in phi scale; can be estimated from the percentages of the particles ... more

Pearson's moment coefficient of skewness

In probability theory and statistics, skewness is a measure of the asymmetry of the probability distribution of a real-valued random variable about its ... more

Worksheet 341

The awe‐inspiring Great Pyramid of Cheops was built more than 4500 years ago. Its square base, originally 230 m on a side, covered 13.1 acres, and it was 146 m high (H), with a mass of about 7×10^9 kg. (The pyramid’s dimensions are slightly different today due to quarrying and some sagging). Historians estimate that 20,000 workers spent 20 years to construct it, working 12-hour days, 330 days per year.

a) Calculate the gravitational potential energy stored in the pyramid, given its center of mass is at one-fourth its height.

Division
Potential energy

b) Only a fraction of the workers lifted blocks; most were involved in support services such as building ramps, bringing food and water, and hauling blocks to the site. Calculate the efficiency of the workers who did the lifting, assuming there were 1000 of them and they consumed food energy at the rate of 300 Kcal/hour.

first we calculate the number of hours worked per year.

Multiplication

then we calculate the number of hours worked in the 20 years.

Multiplication

Then we calculate the energy consumed in 20 years knowing the energy consumed per hour and the total hours worked in 20 years.

Multiplication
Multiplication

The efficiency is the resulting potential energy divided by the consumed energy.

Division
Pearson's moment coefficient of kurtosis (excess kurtosis)

In probability theory and statistics, kurtosis is any measure of the “tailedness” of the probability distribution of a real-valued random ... more

Hyperbolic law of cosines - 2nd law

In hyperbolic geometry, the law of cosines is a pair of theorems relating the sides and angles of triangles on a hyperbolic plane, analogous to the planar ... more

Hyperbolic law of cosines - 1st law

In hyperbolic geometry, the law of cosines is a pair of theorems relating the sides and angles of triangles on a hyperbolic plane, analogous to the planar ... more

1st medians' theorem - Apollonius' theorem

Relates the length of a median and the sides of an arbitrary triangle

... more

Standard deviation of any arithmetic progression

An arithmetic progression (AP) or arithmetic sequence is a sequence of numbers such that the difference between the consecutive terms is constant and is ... more

...can't find what you're looking for?

Create a new formula

Search criteria:

Similar to formula
Category
Content type
  • Formula (1136)
  • Worksheet (15)