'

Search results

Found 533 matches
True anomaly - elliptic orbits

In celestial mechanics, true anomaly is an angular parameter that defines the position of a body moving along a Keplerian orbit. It is the angle between ... more

Worksheet 296

(a) Calculate the buoyant force on 10,000 metric tons (1.00×10 7 kg) of solid steel completely submerged in water, and compare this with the steel’s weight.

(b) What is the maximum buoyant force that water could exert on this same steel if it were shaped into a boat that could displace 1.00×10 5 m 3 of water?

Strategy for (a)

To find the buoyant force, we must find the weight of water displaced. We can do this by using the densities of water and steel given in Table [insert table #] We note that, since the steel is completely submerged, its volume and the water’s volume are the same. Once we know the volume of water, we can find its mass and weight

First, we use the definition of density to find the steel’s volume, and then we substitute values for mass and density. This gives :

Density

Because the steel is completely submerged, this is also the volume of water displaced, Vw. We can now find the mass of water displaced from the relationship between its volume and density, both of which are known. This gives:

Density

By Archimedes’ principle, the weight of water displaced is m w g , so the buoyant force is:

Force (Newton's second law)

The steel’s weight is 9.80×10 7 N , which is much greater than the buoyant force, so the steel will remain submerged.

Strategy for (b)

Here we are given the maximum volume of water the steel boat can displace. The buoyant force is the weight of this volume of water.

The mass of water displaced is found from its relationship to density and volume, both of which are known. That is:

Density

The maximum buoyant force is the weight of this much water, or

Force (Newton's second law)

Discussion

The maximum buoyant force is ten times the weight of the steel, meaning the ship can carry a load nine times its own weight without sinking.

Reference : OpenStax College,College Physics. OpenStax College. 21 June 2012.
http://openstaxcollege.org/textbooks/college-physics
Creative Commons License : http://creativecommons.org/licenses/by/3.0/

Drift velocity for aelectrical mobility

The drift velocity is the average velocity that a particle, such as an electron, attains in a material due to an electric field. It can also be referred to ... more

Law of Conservation of Mechanical Energy - General version

Energy can be neither created nor destroyed.
Total energy is constant in any process. It may change in form or be transferred from one system to ... more

Diatomic ideal gas heat capacity at constant volume

Heat capacity or thermal capacity is a physical quantity equal to the ratio of the heat that is added to (or removed from) an object to the resulting ... more

Frequency of a string under tension (nth harmonic)

A vibration in a string is a wave. Resonance causes a vibrating string to produce a sound with constant frequency, i.e. constant pitch. If the length or ... more

Elastic collision (final velocity of the second of the two bodies in elastic collision)

An elastic collision is an encounter between two bodies in which the total kinetic energy of the two bodies after the encounter is equal to their total ... more

Elastic collision (final velocity of one of the two bodies in elastic collision)

An elastic collision is an encounter between two bodies in which the total kinetic energy of the two bodies after the encounter is equal to their total ... more

Capital Adequacy Ratio

Capital Adequacy Ratio (CAR), also known as Capital to Risk (Weighted) Assets Ratio (CRAR), is the ... more

Body Mass Index - BMI

The body mass index (BMI), or Quetelet index, is a heuristic proxy for human body fat based on an individual’s weight and ... more

...can't find what you're looking for?

Create a new formula