'

Search results

Found 1488 matches
Radius of gyration

Gyration is a rotation in a discrete subgroup of symmetries of the Euclidean plane such that the subgroup does not also contain a reflection symmetry whose ... more

Elastic deflection at any point along the span of a center loaded beam

Elastic deflection is the degree to which a structural element is displaced under a load.
The deflection at any point, along the span of a center ... more

Dirac particle (spin magnetic moment)

The spin magnetic moment of a charged, spin-1/2 particle that does not possess any internal structure (a Dirac particle).

In physics, mainly ... more

Second moment of area - Hollow Rectangular profile

The second moment of area, also known as moment of inertia of plane area, area moment of inertia, polar moment of area or second area moment, is a ... more

Maximum axial load that a long, slender, ideal column can carry without buckling

Column or pillar in architecture and structural engineering is a structural element that transmits, through compression, the weight of the structure above ... more

Rotational stiffness ( depended on rigidity modulus of the material)

Stiffness is the rigidity of an object — the extent to which it resists deformation in response to an applied force. In general, stiffness is not the same ... more

Worksheet 306

Calculate the force the biceps muscle must exert to hold the forearm and its load as shown in the figure below, and compare this force with the weight of the forearm plus its load. You may take the data in the figure to be accurate to three significant figures.


(a) The figure shows the forearm of a person holding a book. The biceps exert a force FB to support the weight of the forearm and the book. The triceps are assumed to be relaxed. (b) Here, you can view an approximately equivalent mechanical system with the pivot at the elbow joint

Strategy

There are four forces acting on the forearm and its load (the system of interest). The magnitude of the force of the biceps is FB, that of the elbow joint is FE, that of the weights of the forearm is wa , and its load is wb. Two of these are unknown FB, so that the first condition for equilibrium cannot by itself yield FB . But if we use the second condition and choose the pivot to be at the elbow, then the torque due to FE is zero, and the only unknown becomes FB .

Solution

The torques created by the weights are clockwise relative to the pivot, while the torque created by the biceps is counterclockwise; thus, the second condition for equilibrium (net τ = 0) becomes

Force (Newton's second law)
Torque
Force (Newton's second law)
Torque

Note that sin θ = 1 for all forces, since θ = 90º for all forces. This equation can easily be solved for FB in terms of known quantities,yielding. Entering the known values gives

Mechanical equilibrium - 3=3 Torque example

which yields

Torque
Addition

Now, the combined weight of the arm and its load is known, so that the ratio of the force exerted by the biceps to the total weight is

Division

Discussion

This means that the biceps muscle is exerting a force 7.38 times the weight supported.

Reference : OpenStax College,College Physics. OpenStax College. 21 June 2012.
http://openstaxcollege.org/textbooks/college-physics
Creative Commons License : http://creativecommons.org/licenses/by/3.0/

Torsion

In solid mechanics, torsion is the twisting of an object due to an applied torque. It is expressed in newton metres (N·m) or foot-pound force (ft·lbf). In ... more

Maximum elastic deflection of an off-center loaded beam supported by two simple supports

In engineering, deflection is the degree to which a structural element is displaced under a load.
The maximum elastic deflection on a beam supported ... more

Gyromagnetic ratio for a classical rotating body

In physics, the gyromagnetic ratio (also sometimes known as the magnetogyric ratio in other disciplines) of a particle or system is the ratio of its ... more

...can't find what you're looking for?

Create a new formula