'

Search results

Found 891 matches
Sum of the ratios on the three altitudes of the distance of the orthocenter from the base to the length of the altitude

Altitude of a triangle is a line segment through a vertex and perpendicular to a line containing the base (the opposite side of the triangle). This line ... more

Electron's speed at any radius

The electrons can only orbit stably, without radiating, in certain orbits at a certain discrete set of distances from the nucleus. These orbits are ... more

Transistor regulator ( Rv providing a bias current)

In the simplest case a common collector transistor (emitter follower) is used with the base of the regulating transistor connected directly to the voltage ... more

Area of a triangle (Heron's formula)

In geometry, Heron’s formula (sometimes called Hero’s formula), named after Hero of Alexandria, gives the area of a triangle by requiring no ... more

Moment of inertia of thick-walled cylindrical tube with open ends

Mass moment of inertia, measures the extent to which an object resists rotational acceleration about an axis, and is the rotational analogue to mass.
... more

Sum of the ratios on the three altitudes of the distance of the orthocenter from the vertex to the length of the altitude

Altitude of a triangle is a line segment through a vertex and perpendicular to a line containing the base (the opposite side of the triangle). This line ... more

Volume-based particle size

Particle size is a notion introduced for comparing dimensions of solid particles (flecks), liquid particles (droplets), or gaseous particles (bubbles).
... more

Worksheet 316

Calculate the change in length of the upper leg bone (the femur) when a 70.0 kg man supports 62.0 kg of his mass on it, assuming the bone to be equivalent to a uniform rod that is 45.0 cm long and 2.00 cm in radius.

Strategy

The force is equal to the weight supported:

Force (Newton's second law)

and the cross-sectional area of the upper leg bone(femur) is:

Disk area

To find the change in length we use the Young’s modulus formula. The Young’s modulus reference value for a bone under compression is known to be 9×109 N/m2. Now,all quantities except ΔL are known. Thus:

Young's Modulus

Discussion

This small change in length seems reasonable, consistent with our experience that bones are rigid. In fact, even the rather large forces encountered during strenuous physical activity do not compress or bend bones by large amounts. Although bone is rigid compared with fat or muscle, several of the substances listed in Table 5.3(see reference below) have larger values of Young’s modulus Y . In other words, they are more rigid.

Reference:
This worksheet is a modified version of Example 5.4 page 188 found in :
OpenStax College,College Physics. OpenStax College. 21 June 2012.
http://openstaxcollege.org/textbooks/college-physics
Creative Commons License : http://creativecommons.org/licenses/by/3.0/

Scale Height

In various scientific contexts, a scale height is a distance over which a quantity decreases by a factor of e (approximately 2.71828, the base of natural ... more

Vertical Wind Profile - Logarithmic Law

Wind speed extrapolation

In wind energy studies, two mathematical models or 'laws’ have generally been used to model the vertical profile of ... more

...can't find what you're looking for?

Create a new formula