# Search results

The second moment of area, also known as moment of inertia of plane area, area moment of inertia, polar moment of area or second area moment, is a ... more

The second moment of area, also known as moment of inertia of plane area, area moment of inertia, polar moment of area or second area moment, is a ... more

In physics, the kinetic energy of an object is the energy that it possesses due to its motion. It is the work needed to accelerate a body of a given mass ... more

In mathematics, the Klein bottle is an example of a non-orientable surface, informally, it is a surface (a two-dimensional manifold) in which notions of ... more

The second moment of area, also known as moment of inertia of plane area, area moment of inertia, polar moment of area or second area moment, is a ... more

Harmonic Drive is the brand name of strain wave gear trademarked by the Harmonic Drive company, and invented in 1957 by C.W. Musser.

It is very ... more

**(a)** The figure shows the forearm of a person holding a book. The biceps exert a force **F _{B}** to support the weight of the forearm and the book. The triceps are assumed to be relaxed.

**(b)**Here, you can view an approximately equivalent mechanical system with the pivot at the elbow joint

Strategy

There are four forces acting on the forearm and its load (the system of interest). The magnitude of the force of the biceps is **F _{B}**, that of the elbow joint is

**F**, that of the weights of the forearm is

_{E}**w**, and its load is

_{a}**w**. Two of these are unknown

_{b}**F**, so that the first condition for equilibrium cannot by itself yield

_{B}**F**. But if we use the second condition and choose the pivot to be at the elbow, then the torque due to

_{B}**F**is zero, and the only unknown becomes

_{E}**F**.

_{B}Solution

The torques created by the weights are clockwise relative to the pivot, while the torque created by the biceps is counterclockwise; thus, the second condition for equilibrium (net **τ = 0**) becomes

Note that **sin θ = 1** for all forces, since **θ = 90º** for all forces. This equation can easily be solved for **F _{B}** in terms of known quantities,yielding. Entering the known values gives

which yields

Now, the combined weight of the arm and its load is known, so that the ratio of the force exerted by the biceps to the total weight is

Discussion

This means that the biceps muscle is exerting a force **7.38** times the weight supported.

Reference : OpenStax College,College Physics. OpenStax College. 21 June 2012.

http://openstaxcollege.org/textbooks/college-physics

Creative Commons License : http://creativecommons.org/licenses/by/3.0/

...can't find what you're looking for?

Create a new formula
Calculate the force the biceps muscle must exert to hold the forearm and its load as shown in the figure below, and compare this force with the weight of the forearm plus its load. You may take the data in the figure to be accurate to three significant figures.