'

Search results

Found 1659 matches
Shock Diamond - distance from the nozzle

Shock diamonds (also known as Mach diamonds, Mach disks, Mach rings, doughnut tails or thrust diamonds) are a formation of standing wave patterns that ... more

Discharge Coefficient

In a nozzle or other constriction, the discharge coefficient (also known as coefficient of discharge) is the ratio of the actual discharge to the ... more

Distance of L3 Langarian point

In celestial mechanics, the Lagrangian points (also Lagrange points, L-points, or libration points) are positions in an orbital configuration of two large ... more

Wind loading - takeoff speed

In aerodynamics, wing loading is the total weight of an aircraft divided by the area of its wing. The stalling speed of an aircraft in straight, level ... more

Centripetal Force - angular velocity

Centripetal force (from Latin centrum “center” and petere “to seek”) is a force that makes a body follow a curved path: its ... more

Moment of inertia of a thick-walled cylindrical tube ( Axis at the center of the cylinder perpendicular to its height)

Moment of inertia is the mass property of a rigid body that defines the torque needed for a desired angular acceleration about an axis of rotation. Moment ... more

Energy – Momentum relation

In physics, the energy–momentum relation, or relativistic dispersion relation, is the relativistic equation relating any object’s rest (intrinsic) ... more

Worksheet 306

Calculate the force the biceps muscle must exert to hold the forearm and its load as shown in the figure below, and compare this force with the weight of the forearm plus its load. You may take the data in the figure to be accurate to three significant figures.


(a) The figure shows the forearm of a person holding a book. The biceps exert a force FB to support the weight of the forearm and the book. The triceps are assumed to be relaxed. (b) Here, you can view an approximately equivalent mechanical system with the pivot at the elbow joint

Strategy

There are four forces acting on the forearm and its load (the system of interest). The magnitude of the force of the biceps is FB, that of the elbow joint is FE, that of the weights of the forearm is wa , and its load is wb. Two of these are unknown FB, so that the first condition for equilibrium cannot by itself yield FB . But if we use the second condition and choose the pivot to be at the elbow, then the torque due to FE is zero, and the only unknown becomes FB .

Solution

The torques created by the weights are clockwise relative to the pivot, while the torque created by the biceps is counterclockwise; thus, the second condition for equilibrium (net Ï„ = 0) becomes

Force (Newton's second law)
Torque
Force (Newton's second law)
Torque

Note that sin θ = 1 for all forces, since θ = 90º for all forces. This equation can easily be solved for FB in terms of known quantities,yielding. Entering the known values gives

Mechanical equilibrium - 3=3 Torque example

which yields

Torque
Addition

Now, the combined weight of the arm and its load is known, so that the ratio of the force exerted by the biceps to the total weight is

Division

Discussion

This means that the biceps muscle is exerting a force 7.38 times the weight supported.

Reference : OpenStax College,College Physics. OpenStax College. 21 June 2012.
http://openstaxcollege.org/textbooks/college-physics
Creative Commons License : http://creativecommons.org/licenses/by/3.0/

Kepler's Third Law - with Radial Acceleration

In astronomy, Kepler’s laws of planetary motion are three scientific laws describing the motion of planets around the Sun.

1.The orbit of a ... more

Blade root bending moment load due to yaw

The blade root bending moment due to the wind turbine yaw operation. The yaw rate can be calculated for passive yaw, or is defined by the design for active ... more

...can't find what you're looking for?

Create a new formula