'

Search results

Found 1659 matches
Propellant mass fraction

In aerospace engineering, the propellant mass fraction is the portion of a vehicle’s mass which does not reach the destination, usually used as a ... more

Minimum required rocket energy

Spacecraft propulsion is any method used to accelerate spacecraft and artificial satellites. Space propulsion or in-space propulsion exclusively deals with ... more

Minimum chemical rocket energy required

Spacecraft propulsion is any method used to accelerate spacecraft and artificial satellites. Space propulsion or in-space propulsion exclusively deals with ... more

Net Thrust of a Rocket Engine

A rocket engine, or simply “rocket”, is a jet engine that uses only stored propellant mass for forming its high speed propulsive jet. Rocket ... more

Thrust

Thrust is a reaction force described quantitatively by Newton’s second and third laws. When a system expels or accelerates mass in one direction, the ... more

Water Rocket - peak height

A water rocket is a type of model rocket using water as its reaction mass. Such a rocket is typically made from a used plastic soft drink bottle. The water ... more

Worksheet 289

Prior to manned space flights, rocket sleds were used to test aircraft, missile equipment, and physiological effects on human subjects at high speeds. They consisted of a platform that was mounted on one or two rails and propelled by several rockets. Calculate the magnitude of force exerted by each rocket, called its thrust T , for the four-rocket propulsion system shown in the Figure below. The sled’s initial acceleration is 49 m/s 2, the mass of the system is 2100 kg, and the force of friction opposing the motion is known to be 650 N.

A sled experiences a rocket thrust that accelerates it to the right.Each rocket creates an identical thrust T . As in other situations where there is only horizontal acceleration, the vertical forces cancel. The ground exerts an upward force N on the system that is equal in magnitude and opposite in direction to its weight,w.The system here is the sled, its rockets, and rider, so none of the forces between these objects are considered. The arrow representing friction ( f ) is drawn larger than scale.
Assumptions: The mass of the Sled remains steady throughout the operation

Strategy

Although there are forces acting vertically and horizontally, we assume the vertical forces cancel since there is no vertical acceleration. This leaves us with only horizontal forces and a simpler one-dimensional problem. Directions are indicated with plus or minus signs, with right taken as the positive direction. See the free-body diagram in the figure.

Solution

Since acceleration, mass, and the force of friction are given, we start with Newton’s second law and look for ways to find the thrust of the engines. Since we have defined the direction of the force and acceleration as acting “to the right,” we need to consider only the magnitudes of these quantities in the calculations. Hence we begin with

Force (Newton's second law)

Fnet is the net force along the horizontal direction, m is the rocket’s mass and a the acceleration.

We can see from the Figure at the top, that the engine thrusts add, while friction opposes the thrust.

Subtraction

Tt is the total thrust from the 4 rockets, Fnet the net force along the horizontal direction and Ff the force of friction.

Finally, since there are 4 rockets, we calculate the thrust that each one provides:

Division

T is the individual Thrust of each engine, b is the number of rocket engines

Reference : OpenStax College,College Physics. OpenStax College. 21 June 2012.
http://openstaxcollege.org/textbooks/college-physics
Creative Commons License : http://creativecommons.org/licenses/by/3.0/

Burning Time

This formula calculates the duration of propulsion system burn which is required to achieve a desired ΔV.

... more

Wet bulk density of soil (total bulk density)

Bulk density is a property of powders, granules, and other “divided” solids, especially used in reference to mineral components (soil, gravel), ... more

Characteristic velocity

Characteristic velocity or c*, or C-star is a measure of the combustion performance of a rocket engine independent of nozzle performance, and is used to ... more

...can't find what you're looking for?

Create a new formula