'

Search results

Found 1699 matches
Karman vortex street formula

In fluid dynamics, a Kármán vortex street is a repeating pattern of swirling vortices caused by the unsteady separation of flow of a fluid around blunt ... more

Reflectance for unpolarised incident light

The Fresnel equations (or Fresnel conditions) describe the behaviour of light when moving between media of differing refractive indices. The reflection of ... more

Paschen's Law

In standard conditions at atmospheric pressure, gas serves as an excellent insulator, requiring the application of a significant voltage before breaking ... more

Auger electron spectroscopy - Energetics of Auger transitions (more rigorous model)

Auger electron spectroscopy is a common analytical technique used specifically in the study of surfaces and, more generally, in the area of materials ... more

Gravitational wave - Binaries (Orbital lifetime)

Gravitational waves are disturbances in the curvature (fabric) of spacetime, generated by accelerated masses, that propagate as waves outward from their ... more

Magnetic dipole moment (Ampère model)

Far away from a magnet, its magnetic field is almost always described (to a good approximation) by a dipole field characterized by its total magnetic ... more

Black-Scholes formula - value of a call option for a non-dividend-paying underlying stock

The Black–Scholes /ˌblæk ˈʃoʊlz/ or Black–Scholes–Merton model is a mathematical model of a financial market containing derivative investment instruments. ... more

Auger electron spectroscopy - Energetics of Auger transitions

Auger electron spectroscopy is a common analytical technique used specifically in the study of surfaces and, more generally, in the area of materials ... more

Free-Space Path Loss (in dB)

In telecommunication, free-space path loss (FSPL) is the loss in signal strength of an electromagnetic wave that would result ... more

Worksheet 308

Astrology, that unlikely and vague pseudoscience, makes much of the position of the planets at the moment of one’s birth. The only known force a planet exerts on Earth is gravitational.

(a) Calculate the gravitational force exerted on a 4.20 kg baby by a 100 kg father 0.200 m away at birth (he is assisting, so he is close to the child).

(b) Calculate the force on the baby due to Jupiter if it is at its closest distance to Earth, some 6.29e+11 m away. How does the force of Jupiter on the baby compare to the force of the father on the baby?

Father’s gravitational force on the baby is:

Newton's law of universal gravitation

Jupiter’s gravitational force on the baby is:

Newton's law of universal gravitation
Division

(c) What should be the father’s weight, so that he exerts the same force on the baby as that of Jupiter? **
**this section is not included in the Reference material

Newton's law of universal gravitation

Discussion

Other objects in the room and the hospital building also exert similar gravitational forces. (Of course, there could be an unknown force acting, but scientists first need to be convinced that there is even an effect, much less that an unknown force causes it.)

Reference : OpenStax College,College Physics. OpenStax College. 21 June 2012.
http://openstaxcollege.org/textbooks/college-physics
Creative Commons License : http://creativecommons.org/licenses/by/3.0/

Dedicated to little Konstantinos

...can't find what you're looking for?

Create a new formula