'

Search results

Found 780 matches
Critical Speed of a Rotating Shaft - Rayleigh–Ritz method

In solid mechanics, in the field of rotordynamics, the critical speed is the theoretical angular velocity that excites the natural frequency of a rotating ... more

Vis-Viva Equation - cirlcular orbit

In astrodynamics, the vis viva equation, also referred to as orbital energy conservation equation, is one of the fundamental equations that govern the ... more

Kinetic energy (related to object's momentum)

In physics, the kinetic energy of an object is the energy that it possesses due to its motion. It is the work needed to accelerate a body of a given mass ... more

Linear damping oscillation

Damped harmonic motion is a real oscillation, in which an object is hanging on a spring. Because of the existence of internal friction and air resistance, ... more

Angular Momentum

In physics, angular momentum, moment of momentum, or rotational momentum is a measure of the amount of rotation an object has, taking into account its ... more

Worksheet 333

A typical small rescue helicopter, like the one in the Figure below, has four blades, each is 4.00 m long and has a mass of 50.0 kg. The blades can be approximated as thin rods that rotate about one end of an axis perpendicular to their length. The helicopter has a total loaded mass of 1000 kg. (a) Calculate the rotational kinetic energy in the blades when they rotate at 300 rpm. (b) Calculate the translational kinetic energy of the helicopter when it flies at 20.0 m/s, and compare it with the rotational energy in the blades. (c) To what height could the helicopter be raised if all of the rotational kinetic energy could be used to lift it?


The first image shows how helicopters store large amounts of rotational kinetic energy in their blades. This energy must be put into the blades before takeoff and maintained until the end of the flight. The engines do not have enough power to simultaneously provide lift and put significant rotational energy into the blades.
The second image shows a helicopter from the Auckland Westpac Rescue Helicopter Service. Over 50,000 lives have been saved since its operations beginning in 1973. Here, a water rescue operation is shown. (credit: 111 Emergency, Flickr)

Strategy

Rotational and translational kinetic energies can be calculated from their definitions. The last part of the problem relates to the idea that energy can change form, in this case from rotational kinetic energy to gravitational potential energy.

Solution for (a)

We must convert the angular velocity to radians per second and calculate the moment of inertia before we can find Er . The angular velocity ω for 1 r.p.m is

Angular velocity

and for 300 r.p.m

Multiplication

The moment of inertia of one blade will be that of a thin rod rotated about its end.

Moment of Inertia - Rod end

The total I is four times this moment of inertia, because there are four blades. Thus,

Multiplication

and so The rotational kinetic energy is

Rotational energy

Solution for (b)

Translational kinetic energy is defined as

Kinetic energy ( related to the object 's velocity )

To compare kinetic energies, we take the ratio of translational kinetic energy to rotational kinetic energy. This ratio is

Division

Solution for (c)

At the maximum height, all rotational kinetic energy will have been converted to gravitational energy. To find this height, we equate those two energies:

Potential energy

Discussion

The ratio of translational energy to rotational kinetic energy is only 0.380. This ratio tells us that most of the kinetic energy of the helicopter is in its spinning blades—something you probably would not suspect. The 53.7 m height to which the helicopter could be raised with the rotational kinetic energy is also impressive, again emphasizing the amount of rotational kinetic energy in the blades.

Reference : OpenStax College,College Physics. OpenStax College. 21 June 2012.
http://openstaxcollege.org/textbooks/college-physics
Creative Commons License : http://creativecommons.org/licenses/by/3.0/

Dynamic (shear) viscosity

The dynamic (shear) viscosity of a fluid expresses its resistance to shearing flows, where adjacent layers move parallel to each other with different ... more

Gravitational wave - Binaries (Orbital lifetime)

Gravitational waves are disturbances in the curvature (fabric) of spacetime, generated by accelerated masses, that propagate as waves outward from their ... more

Epicyclic gearing (overal gear ratio)

An epicyclic gear train consists of two gears mounted so that the center of one gear revolves around the center of the other. A carrier connects the ... more

Velocity in Frictionless Banked Turn

A banked turn (aka. banking turn) is a turn or change of direction in which the vehicle banks or inclines, usually towards the inside of the turn. For a ... more

...can't find what you're looking for?

Create a new formula