'

Search results

Found 1603 matches
K2 for Danish-Kumar Solution

A Bingham plastic is a viscoplastic material that behaves as a rigid body at low stresses but flows as a viscous fluid at high stress. It is named after ... more

Friction Loss (laminar flow)

In fluid flow, friction loss (or skin friction) is the loss of pressure or “head” that occurs in pipe or duct flow due to the effect of the fluid’s ... more

Reynolds number (for a flow in a tube)

In fluid mechanics, the Reynolds number is used to help predict if flow will be laminar or turbulent. We know that flow in a very smooth tube, streamlined ... more

Danish-Kumar Solution (for Buckingham-Reiner equation)

A Bingham plastic is a viscoplastic material that behaves as a rigid body at low stresses but flows as a viscous fluid at high stress. It is named after ... more

Friction Loss (hydraulic slope)

In fluid flow, friction loss (or skin friction) is the loss of pressure or “head” that occurs in pipe or duct flow due to the effect of the fluid’s ... more

Friction Loss (hydraulic slope) - related to pressure change

In fluid flow, friction loss (or skin friction) is the loss of pressure or “head” that occurs in pipe or duct flow due to the effect of the fluid’s ... more

Convective heat transfer coefficient with Nusselt number for Internal/turbulent flow

Although convective heat transfer can be derived analytically through dimensional analysis, exact analysis of the boundary layer, approximate integral ... more

Kozeny-Carman equation

The Kozeny–Carman equation (or Carman-Kozeny equation) is a relation used in the field of fluid dynamics to calculate the pressure drop of a fluid flowing ... more

Reynolds number - Flow in a pipe with mass flow rate

For flow in a pipe or tube, the Reynolds number is generally defined as presented here.

For shapes such as squares, rectangular or annular ducts ... more

Shear rate at the inner wall of a Newtonian fluid (flowing within a pipe)

A Newtonian fluid is a fluid in which the viscous stresses arising from its flow, at every point, are proportional to the local strain rate — the rate of ... more

...can't find what you're looking for?

Create a new formula