'

Search results

Found 905 matches
Worksheet 296

(a) Calculate the buoyant force on 10,000 metric tons (1.00×10 7 kg) of solid steel completely submerged in water, and compare this with the steel’s weight.

(b) What is the maximum buoyant force that water could exert on this same steel if it were shaped into a boat that could displace 1.00×10 5 m 3 of water?

Strategy for (a)

To find the buoyant force, we must find the weight of water displaced. We can do this by using the densities of water and steel given in Table [insert table #] We note that, since the steel is completely submerged, its volume and the water’s volume are the same. Once we know the volume of water, we can find its mass and weight

First, we use the definition of density to find the steel’s volume, and then we substitute values for mass and density. This gives :

Density

Because the steel is completely submerged, this is also the volume of water displaced, Vw. We can now find the mass of water displaced from the relationship between its volume and density, both of which are known. This gives:

Density

By Archimedes’ principle, the weight of water displaced is m w g , so the buoyant force is:

Force (Newton's second law)

The steel’s weight is 9.80×10 7 N , which is much greater than the buoyant force, so the steel will remain submerged.

Strategy for (b)

Here we are given the maximum volume of water the steel boat can displace. The buoyant force is the weight of this volume of water.

The mass of water displaced is found from its relationship to density and volume, both of which are known. That is:

Density

The maximum buoyant force is the weight of this much water, or

Force (Newton's second law)

Discussion

The maximum buoyant force is ten times the weight of the steel, meaning the ship can carry a load nine times its own weight without sinking.

Reference : OpenStax College,College Physics. OpenStax College. 21 June 2012.
http://openstaxcollege.org/textbooks/college-physics
Creative Commons License : http://creativecommons.org/licenses/by/3.0/

Corner sight distance

Corner sight distance (CSD) is the road alignment specification which provides a substantially clear line of sight so that the ... more

Metcalfe’s Law

Metcalfe’s law states that the value of a telecommunications network is proportional to the square of the number of connected users of the system ... more

Total constant power (Three-phase electric application)

In electrical engineering, three-phase electric power systems have at least three conductors carrying alternating current voltages that are offset in time ... more

Load and Resistance Factor Design (LRFD) - Load combinations (eq3a)

In structural engineering, a structure is a body or combination of pieces of rigid bodies in space to form a fitness system for supporting loads. ... more

Gravity gradiant

Gravity gradiometry is the study and measurement of variations in the acceleration due to gravity. The gravity gradient is the spatial rate of change of ... more

Load and Resistance Factor Design (LRFD) - Load combinations (eq3b)

In structural engineering, a structure is a body or combination of pieces of rigid bodies in space to form a fitness system for supporting loads. ... more

NACA 4 Series Airfoils (symmetrical)

The NACA airfoils are airfoil shapes for aircraft wings developed by the National Advisory Committee for Aeronautics (... more

Angle required to hit polar coordinate (x,y) - (projectile following a ballistic trajectory)

In physics, the ballistic trajectory of a projectile is the path that a thrown or launched projectile or missile without propulsion will take under the ... more

Near branch of a hyperbola in polar coordinates with respect to a focal point

In mathematics, a hyperbola is a type of smooth curve, lying in a plane, defined by its geometric properties or by equations for which it is the solution ... more

...can't find what you're looking for?

Create a new formula