'

Search results

Found 1747 matches
4th Equation of Motion - Linear Velocity : time independent

In mathematical physics, equations of motion are equations that describe the behaviour of a physical system in terms of its motion as a function of ... more

3rd Equation of Motion - Final Position : acceleration independent

In mathematical physics, equations of motion are equations that describe the behaviour of a physical system in terms of its motion as a function of ... more

Apparent power

The power factor of an AC electrical power system is defined as the ratio of the real power flowing to the load, to the apparent power in the circuit. In a ... more

Arbitrary Cherenkov emission angle

Cherenkov radiation, also known as Vavilov–Cherenkov radiation,[a] is electromagnetic radiation emitted when a charged particle (such as an electron) ... more

2nd Equation of Motion - Final Position

In mathematical physics, equations of motion are equations that describe the behaviour of a physical system in terms of its motion as a function of ... more

Moment of Inertia - Sphere (solid) - y axis

In physics and applied mathematics, the mass moment of inertia, usually denoted by I, measures the extent to which an object resists rotational ... more

Radius of the turn of an upright bike (for small steering angles)

In order for a bike to turn, that is, change its direction of forward travel, the front wheel must aim approximately in the desired direction, as with any ... more

Monoclinic crystal system (Unit cell's volume)

In crystallography, the monoclinic crystal system is one of the seven lattice point groups. A crystal system is described by three vectors. In the ... more

Moment of Inertia - Right Circular Cone - x and y axis

In physics and applied mathematics, the mass moment of inertia, usually denoted by I, measures the extent to which an object resists rotational ... more

Shear rate at the inner wall of a Newtonian fluid (flowing within a pipe)

A Newtonian fluid is a fluid in which the viscous stresses arising from its flow, at every point, are proportional to the local strain rate — the rate of ... more

...can't find what you're looking for?

Create a new formula