Search results

Found 1745 matches
Flight path angle (elliptic orbit)

In astrodynamics an elliptic orbit is a Kepler orbit with the eccentricity less than 1; this includes the special case of a circular orbit, with ... more

Coulomb's law

Coulomb’s law, or Coulomb’s inverse-square law, is a law of physics describing the electrostatic interaction between electrically charged ... more

Knudsen number (Relationship to Mach and Reynolds numbers in gases)

The Knudsen number (Kn) is a dimensionless number defined as the ratio of the molecular mean free path length to a representative physical length scale. ... more

Magnus effect

The Magnus effect is the commonly observed effect in which a spinning ball (or cylinder) curves away from its principal flight path.The overall behaviour ... more

Sagnac effect (phase difference)

The Sagnac effect, also called Sagnac interference, named after French physicist Georges Sagnac, is a phenomenon encountered in interferometry that is ... more

Angular Momentum

In physics, angular momentum, moment of momentum, or rotational momentum is a measure of the amount of rotation an object has, taking into account its ... more

Worksheet 296

(a) Calculate the buoyant force on 10,000 metric tons (1.00×10 7 kg) of solid steel completely submerged in water, and compare this with the steel’s weight.

(b) What is the maximum buoyant force that water could exert on this same steel if it were shaped into a boat that could displace 1.00×10 5 m 3 of water?

Strategy for (a)

To find the buoyant force, we must find the weight of water displaced. We can do this by using the densities of water and steel given in Table [insert table #] We note that, since the steel is completely submerged, its volume and the water’s volume are the same. Once we know the volume of water, we can find its mass and weight

First, we use the definition of density to find the steel’s volume, and then we substitute values for mass and density. This gives :


Because the steel is completely submerged, this is also the volume of water displaced, Vw. We can now find the mass of water displaced from the relationship between its volume and density, both of which are known. This gives:


By Archimedes’ principle, the weight of water displaced is m w g , so the buoyant force is:

Force (Newton's second law)

The steel’s weight is 9.80×10 7 N , which is much greater than the buoyant force, so the steel will remain submerged.

Strategy for (b)

Here we are given the maximum volume of water the steel boat can displace. The buoyant force is the weight of this volume of water.

The mass of water displaced is found from its relationship to density and volume, both of which are known. That is:


The maximum buoyant force is the weight of this much water, or

Force (Newton's second law)


The maximum buoyant force is ten times the weight of the steel, meaning the ship can carry a load nine times its own weight without sinking.

Reference : OpenStax College,College Physics. OpenStax College. 21 June 2012.
Creative Commons License : http://creativecommons.org/licenses/by/3.0/

Eccentricity of the hyperbola

A hyperbola is a type of smooth curve, lying in a plane, defined by its geometric properties or by equations for which it is the solution set. A hyperbola ... more

Rotational stiffness ( depended on rigidity modulus of the material)

Stiffness is the rigidity of an object — the extent to which it resists deformation in response to an applied force. In general, stiffness is not the same ... more

Physical Pendulum

A pendulum is a mass that is attached to a pivot, from which it can swing freely. Pendulum consisting of an actual object allowed to rotate freely around a ... more

...can't find what you're looking for?

Create a new formula