'

Search results

Found 1515 matches
Worksheet 289

Prior to manned space flights, rocket sleds were used to test aircraft, missile equipment, and physiological effects on human subjects at high speeds. They consisted of a platform that was mounted on one or two rails and propelled by several rockets. Calculate the magnitude of force exerted by each rocket, called its thrust T , for the four-rocket propulsion system shown in the Figure below. The sled’s initial acceleration is 49 m/s 2, the mass of the system is 2100 kg, and the force of friction opposing the motion is known to be 650 N.

A sled experiences a rocket thrust that accelerates it to the right.Each rocket creates an identical thrust T . As in other situations where there is only horizontal acceleration, the vertical forces cancel. The ground exerts an upward force N on the system that is equal in magnitude and opposite in direction to its weight,w.The system here is the sled, its rockets, and rider, so none of the forces between these objects are considered. The arrow representing friction ( f ) is drawn larger than scale.
Assumptions: The mass of the Sled remains steady throughout the operation

Strategy

Although there are forces acting vertically and horizontally, we assume the vertical forces cancel since there is no vertical acceleration. This leaves us with only horizontal forces and a simpler one-dimensional problem. Directions are indicated with plus or minus signs, with right taken as the positive direction. See the free-body diagram in the figure.

Solution

Since acceleration, mass, and the force of friction are given, we start with Newton’s second law and look for ways to find the thrust of the engines. Since we have defined the direction of the force and acceleration as acting “to the right,” we need to consider only the magnitudes of these quantities in the calculations. Hence we begin with

Force (Newton's second law)

Fnet is the net force along the horizontal direction, m is the rocket’s mass and a the acceleration.

We can see from the Figure at the top, that the engine thrusts add, while friction opposes the thrust.

Subtraction

Tt is the total thrust from the 4 rockets, Fnet the net force along the horizontal direction and Ff the force of friction.

Finally, since there are 4 rockets, we calculate the thrust that each one provides:

Division

T is the individual Thrust of each engine, b is the number of rocket engines

Reference : OpenStax College,College Physics. OpenStax College. 21 June 2012.
http://openstaxcollege.org/textbooks/college-physics
Creative Commons License : http://creativecommons.org/licenses/by/3.0/

Danish-Kumar Solution (for Buckingham-Reiner equation)

A Bingham plastic is a viscoplastic material that behaves as a rigid body at low stresses but flows as a viscous fluid at high stress. It is named after ... more

Gravitational wave - Binaries (Orbital lifetime)

Gravitational waves are disturbances in the curvature (fabric) of spacetime, generated by accelerated masses, that propagate as waves outward from their ... more

Gauge factor

Strain gauge is a device used to measure strain on an object. A strain is a normalized measure of deformation representing the displacement between ... more

Auger electron spectroscopy - electron impact cross-section

Auger electron spectroscopy is a common analytical technique used specifically in the study of surfaces and, more generally, in the area of materials ... more

Wavelength of pressure waves

In an elastic medium with rigidity, a harmonic pressure wave oscillation is related to the amplitude of displacement, the distance along the axis of ... more

Flywheel energy storage (Energy density)

A flywheel is a rotating mechanical device that is used to store rotational energy. Flywheel energy storage works by accelerating a rotor to a very high ... more

Monatomic ideal gas heat capacity at constant pressure

Heat capacity or thermal capacity is a physical quantity equal to the ratio of the heat that is added to (or removed from) an object to the resulting ... more

Monatomic ideal gas heat capacity at constant volume

Heat capacity or thermal capacity is a physical quantity equal to the ratio of the heat that is added to (or removed from) an object to the resulting ... more

Antenna Gain

In electromagnetics, an antenna’s power gain or simply gain is a key performance figure which combines the antenna’s directivity and electrical ... more

...can't find what you're looking for?

Create a new formula