'

Search results

Found 616 matches
Bearing capacity for circular foundations (Terzaghi's Theory)

In geotechnical engineering, bearing capacity is the capacity of soil to support the loads applied to the ground. The bearing capacity of soil is the ... more

Bearing capacity for continuous foundations (Terzaghi's Theory)

In geotechnical engineering, bearing capacity is the capacity of soil to support the loads applied to the ground. The bearing capacity of soil is the ... more

Properties of concrete - modulus of elasticity

Concrete has relatively high compressive strength, but significantly lower tensile strength. As a result, without compensating, concrete would almost ... more

Supercsapacitor - Time to deliver a Constant Power

A supercapacitor (SC) (sometimes ultracapacitor, formerly electric double-layer capacitor (EDLC)) is a high-capacity ... more

Triclinic crystal system (Unit cell's volume)

In crystallography, the triclinic crystal system is one of the 7 crystal systems. A crystal system is described by three basis vectors. In the triclinic ... more

Supercsapacitor - Time to deliver a Constant Current

A supercapacitor (SC) (sometimes ultracapacitor, formerly electric double-layer capacitor (EDLC)) is a high-capacity ... more

Central processing unit power consumption

Central processing unit power dissipation or CPU power dissipation is the process in which central processing units (CPUs) ... more

Gearing reduction ratio

Harmonic Drive is the brand name of strain wave gear trademarked by the Harmonic Drive company, and invented in 1957 by C.W. Musser.

It is very ... more

Hawking Radiation - Temperature of a black body (or a black hole)

A black body is an idealized physical body that absorbs all incident electromagnetic radiation, regardless of frequency or angle of incidence. A black hole ... more

Worksheet 316

Calculate the change in length of the upper leg bone (the femur) when a 70.0 kg man supports 62.0 kg of his mass on it, assuming the bone to be equivalent to a uniform rod that is 45.0 cm long and 2.00 cm in radius.

Strategy

The force is equal to the weight supported:

Force (Newton's second law)

and the cross-sectional area of the upper leg bone(femur) is:

Disk area

To find the change in length we use the Young’s modulus formula. The Young’s modulus reference value for a bone under compression is known to be 9×109 N/m2. Now,all quantities except ΔL are known. Thus:

Young's Modulus

Discussion

This small change in length seems reasonable, consistent with our experience that bones are rigid. In fact, even the rather large forces encountered during strenuous physical activity do not compress or bend bones by large amounts. Although bone is rigid compared with fat or muscle, several of the substances listed in Table 5.3(see reference below) have larger values of Young’s modulus Y . In other words, they are more rigid.

Reference:
This worksheet is a modified version of Example 5.4 page 188 found in :
OpenStax College,College Physics. OpenStax College. 21 June 2012.
http://openstaxcollege.org/textbooks/college-physics
Creative Commons License : http://creativecommons.org/licenses/by/3.0/

...can't find what you're looking for?

Create a new formula