Search results

Found 1421 matches
Relation between the sides, the dinstances of the orthocenter from the vertices and the circumradius of a triangle

Altitude of a triangle is a line segment through a vertex and perpendicular to a line containing the base (the opposite side of the triangle). This line ... more

Theorem of internal triangle's bisector

The bisector of an angle of a triangle divides the opposite side in two segments that are proportional to the other two sides of the triangle

... more

Hyperbolic triangle ( length of the altitude)

A hyperbolic sector is a region of the Cartesian plane {(x,y)} bounded by rays from the origin to two points (a, 1/a) and (b, 1/b) and by the hyperbola xy ... more

Moment of inertia of a solid cuboid ( Axis of rotation at the height )

Moment of inertia is the mass property of a rigid body that defines the torque needed for a desired angular acceleration about an axis of rotation. Moment ... more

Moment of inertia of a solid cuboid ( Axis of rotation at the width)

Moment of inertia is the mass property of a rigid body that defines the torque needed for a desired angular acceleration about an axis of rotation. Moment ... more

Moment of inertia of a solid cuboid ( Axis of rotation at the depth)

Moment of inertia is the mass property of a rigid body that defines the torque needed for a desired angular acceleration about an axis of rotation. Moment ... more

Volume of cone (by the diameter)

Description

A cone is an n-dimensional geometric shape that tapers smoothly from a base (usually flat and circular) to a point called the apex or ... more

Parallelogram law

Parallelogram is a simple quadrilateral with two pairs of parallel sides. The opposite or facing sides of a parallelogram are of equal length and the ... more

Moment of Inertia - I-Beam (Ideal cross section)

An I-beam, also known as H-beam, W-beam (for “wide flange”), Universal Beam (UB), Rolled Steel Joist (RSJ), or ... more

Worksheet 333

A typical small rescue helicopter, like the one in the Figure below, has four blades, each is 4.00 m long and has a mass of 50.0 kg. The blades can be approximated as thin rods that rotate about one end of an axis perpendicular to their length. The helicopter has a total loaded mass of 1000 kg. (a) Calculate the rotational kinetic energy in the blades when they rotate at 300 rpm. (b) Calculate the translational kinetic energy of the helicopter when it flies at 20.0 m/s, and compare it with the rotational energy in the blades. (c) To what height could the helicopter be raised if all of the rotational kinetic energy could be used to lift it?


The first image shows how helicopters store large amounts of rotational kinetic energy in their blades. This energy must be put into the blades before takeoff and maintained until the end of the flight. The engines do not have enough power to simultaneously provide lift and put significant rotational energy into the blades.
The second image shows a helicopter from the Auckland Westpac Rescue Helicopter Service. Over 50,000 lives have been saved since its operations beginning in 1973. Here, a water rescue operation is shown. (credit: 111 Emergency, Flickr)

Strategy

Rotational and translational kinetic energies can be calculated from their definitions. The last part of the problem relates to the idea that energy can change form, in this case from rotational kinetic energy to gravitational potential energy.

Solution for (a)

We must convert the angular velocity to radians per second and calculate the moment of inertia before we can find Er . The angular velocity ω for 1 r.p.m is

Angular velocity

and for 300 r.p.m

Multiplication

The moment of inertia of one blade will be that of a thin rod rotated about its end.

Moment of Inertia - Rod end

The total I is four times this moment of inertia, because there are four blades. Thus,

Multiplication

and so The rotational kinetic energy is

Rotational energy

Solution for (b)

Translational kinetic energy is defined as

Kinetic energy ( related to the object 's velocity )

To compare kinetic energies, we take the ratio of translational kinetic energy to rotational kinetic energy. This ratio is

Division

Solution for (c)

At the maximum height, all rotational kinetic energy will have been converted to gravitational energy. To find this height, we equate those two energies:

Potential energy

Discussion

The ratio of translational energy to rotational kinetic energy is only 0.380. This ratio tells us that most of the kinetic energy of the helicopter is in its spinning blades—something you probably would not suspect. The 53.7 m height to which the helicopter could be raised with the rotational kinetic energy is also impressive, again emphasizing the amount of rotational kinetic energy in the blades.

Reference : OpenStax College,College Physics. OpenStax College. 21 June 2012.
http://openstaxcollege.org/textbooks/college-physics
Creative Commons License : http://creativecommons.org/licenses/by/3.0/

...can't find what you're looking for?

Create a new formula

Search criteria:

Similar to formula
Category
Content type
  • Formula (1405)
  • Worksheet (16)