'

Search results

Found 1107 matches
True anomaly - as a function of eccentric anomaly, Tan form

In celestial mechanics, true anomaly is an angular parameter that defines the position of a body moving along a Keplerian orbit. It is the angle between ... more

True anomaly - as a function of eccentric anomaly, cos form

In celestial mechanics, true anomaly is an angular parameter that defines the position of a body moving along a Keplerian orbit. It is the angle between ... more

Critical Speed of a Rotating Shaft - Dunkerley's method

In solid mechanics, in the field of rotordynamics, the critical speed is the theoretical angular velocity that excites the natural frequency of a rotating ... more

True anomaly - elliptic orbits

In celestial mechanics, true anomaly is an angular parameter that defines the position of a body moving along a Keplerian orbit. It is the angle between ... more

Tuning fork

A tuning fork is an acoustic resonator in the form of a two-pronged fork with the prongs (tines) formed from a U-shaped bar of elastic metal (usually ... more

Radius of the rim of a paraboloidal dish

The elliptic paraboloid is shaped like an oval cup and can have a maximum or minimum point. In a suitable coordinate system with three axes x, y, and z, it ... more

True anomaly

In astronomy, Kepler’s laws of planetary motion are three scientific laws describing the motion of planets around the Sun.

1- The orbit of ... more

Bending moments at any point along the span of a cantilevered beam with the free end supported on a roller

A cantilever is a beam anchored at only one end. The beam carries the load to the support where it is forced against by a moment and shear stress. A ... more

Gaussian beam (beam width at a distance equal to the Rayleigh range)

In optics, a Gaussian beam is a beam of electromagnetic radiation whose transverse electric field and intensity (irradiance) distributions are well ... more

Gaussian beam ( radius of curvature )

In optics, a Gaussian beam is a beam of electromagnetic radiation whose transverse electric field and intensity (irradiance) distributions are well ... more

...can't find what you're looking for?

Create a new formula