# Search results

In fluid mechanics, the Rayleigh number (Ra) for a fluid is a dimensionless number associated with buoyancy-driven flow, also known as free convection or ... more

In fluid mechanics, the Rayleigh number (Ra) for a fluid is a dimensionless number associated with buoyancy driven flow (also known as free convection or ... more

In fluid mechanics, the Rayleigh number (Ra) for a fluid is a dimensionless number associated with buoyancy-driven flow, also known as free convection or ... more

In fluid mechanics, the Rayleigh number (Ra) for a fluid is a dimensionless number associated with buoyancy-driven flow, also known as free convection or ... more

In fluid dynamics, the drag coefficient is a dimensionless quantity that is used to quantify the drag or resistance of an object in a fluid environment, ... more

Schmidt number (Sc) is a dimensionless number defined as the ratio of momentum diffusivity (viscosity) and mass diffusivity, and is used to characterize ... more

The terminal velocity of a particle which is falling in the viscous fluid under its own weight due to gravity.

Generally, for small particles (laminar
... more

Strategy

We can use the Reynolds number equation calculate N’_{R} , since all values in it are either given or can be found in tables of density and viscosity.

Solution

We first find the kinematic viscosity values:

Substituting values into the equation for N’R yields:

Discussion

This value is sufficiently high to imply a turbulent wake. Most large objects, such as airplanes and sailboats, create significant turbulence as they move. As noted before, the Bernoulli principle gives only qualitatively-correct results in such situations.

Reference : OpenStax College,College Physics. OpenStax College. 21 June 2012.

http://openstaxcollege.org/textbooks/college-physics

Creative Commons License : http://creativecommons.org/licenses/by/3.0/

...can't find what you're looking for?

Create a new formula
Calculate the Reynolds number

N′Rfor a ball with a7.40-cmdiameter thrown at40.0 m/s.