'

Search results

Found 1355 matches
Worksheet 289

Prior to manned space flights, rocket sleds were used to test aircraft, missile equipment, and physiological effects on human subjects at high speeds. They consisted of a platform that was mounted on one or two rails and propelled by several rockets. Calculate the magnitude of force exerted by each rocket, called its thrust T , for the four-rocket propulsion system shown in the Figure below. The sled’s initial acceleration is 49 m/s 2, the mass of the system is 2100 kg, and the force of friction opposing the motion is known to be 650 N.

A sled experiences a rocket thrust that accelerates it to the right.Each rocket creates an identical thrust T . As in other situations where there is only horizontal acceleration, the vertical forces cancel. The ground exerts an upward force N on the system that is equal in magnitude and opposite in direction to its weight,w.The system here is the sled, its rockets, and rider, so none of the forces between these objects are considered. The arrow representing friction ( f ) is drawn larger than scale.
Assumptions: The mass of the Sled remains steady throughout the operation

Strategy

Although there are forces acting vertically and horizontally, we assume the vertical forces cancel since there is no vertical acceleration. This leaves us with only horizontal forces and a simpler one-dimensional problem. Directions are indicated with plus or minus signs, with right taken as the positive direction. See the free-body diagram in the figure.

Solution

Since acceleration, mass, and the force of friction are given, we start with Newton’s second law and look for ways to find the thrust of the engines. Since we have defined the direction of the force and acceleration as acting “to the right,” we need to consider only the magnitudes of these quantities in the calculations. Hence we begin with

Force (Newton's second law)

Fnet is the net force along the horizontal direction, m is the rocket’s mass and a the acceleration.

We can see from the Figure at the top, that the engine thrusts add, while friction opposes the thrust.

Subtraction

Tt is the total thrust from the 4 rockets, Fnet the net force along the horizontal direction and Ff the force of friction.

Finally, since there are 4 rockets, we calculate the thrust that each one provides:

Division

T is the individual Thrust of each engine, b is the number of rocket engines

Reference : OpenStax College,College Physics. OpenStax College. 21 June 2012.
http://openstaxcollege.org/textbooks/college-physics
Creative Commons License : http://creativecommons.org/licenses/by/3.0/

Characteristic equation of a solar cell - function of output current and voltage

The theory of solar cells explains the process by which light energy in photons is converted into electric current when the photons strike a suitable ... more

Vertical Curve - Parabolic formula

Vertical Curves are the second of the two important transition elements in geometric design for highways, the first being Horizontal Curves. A vertical ... more

Wind Power - Betz's law

Wind power is the conversion of wind energy into a useful form of energy, such as using wind turbines to produce electrical power, windmills for mechanical ... more

Birch's Law

Birch’s law establishes a linear relation of the compressional wave velocity of rocks and minerals of a constant average atomic weight with density ... more

Torque to lift a load (by lead screw-related to the angle of friction)

A leadscrew (or lead screw), also known as a power screw or translation screw, is a screw used as a linkage in a machine, to translate turning motion into ... more

Torque to lower a load (by lead screw-related to the angle of friction)

A leadscrew (or lead screw), also known as a power screw or translation screw, is a screw used as a linkage in a machine, to translate turning motion into ... more

Dittus-Boelter equation - Nusselt number

In heat transfer at a boundary (surface) within a fluid, the Nusselt number (Nu) is the ratio of convective to conductive heat transfer across (normal to) ... more

Stokes's Law of Sound Attenuation

Stokes’s law of sound attenuation is a formula for the attenuation of sound in a Newtonian fluid, such as water or air, due to the fluid’s ... more

Arrhenius number

In chemical kinetics, the pre-exponential factor or A factor is the pre-exponential constant in the Arrhenius equation. Here named as Arrhenius number.

... more

...can't find what you're looking for?

Create a new formula