'

Search results

Found 1544 matches
Prandtl–Meyer expansion fan - final flow pressure

A supersonic expansion fan, technically known as Prandtl–Meyer expansion fan, is a centred expansion process that occurs when a supersonic flow turns ... more

Current gain

In electronics, gain is a measure of the ability of a two-port circuit (often an amplifier) to increase the power or amplitude of a signal from the input ... more

K2 for Danish-Kumar Solution

A Bingham plastic is a viscoplastic material that behaves as a rigid body at low stresses but flows as a viscous fluid at high stress. It is named after ... more

K1 for Danish-Kumar Solution

A Bingham plastic is a viscoplastic material that behaves as a rigid body at low stresses but flows as a viscous fluid at high stress. It is named after ... more

Sears–Haack body (Wave Drag related to the Volume)

The Sears–Haack body is the shape with the lowest theoretical wave drag in supersonic flow, for a given body length and given volume. The mathematical ... more

Freezing point depression (cryoscopy)

Colligative properties are properties of solutions that depend upon the ratio of the number of solute particles to the number of solvent molecules in a ... more

Alfvén velocity (in SI)

In plasma physics, an Alfvén wave, named after Hannes Alfvén, is a type of magnetohydrodynamic wave in which ions oscillate in response to a restoring ... more

Danish-Kumar Solution (for Buckingham-Reiner equation)

A Bingham plastic is a viscoplastic material that behaves as a rigid body at low stresses but flows as a viscous fluid at high stress. It is named after ... more

Sears–Haack body (Wave Drag related to the maximum Radius)

The Sears–Haack body is the shape with the lowest theoretical wave drag in supersonic flow, for a given body length and given volume. The mathematical ... more

Terminal velocity (under buoyancy force)

The terminal velocity of a falling object is the velocity of the object when the sum of the drag force and buoyancy equals the downward force of gravity ... more

...can't find what you're looking for?

Create a new formula