'

Search results

Found 1062 matches
Magnetic Prandtl number (with Reynolds number)

The Magnetic Prandtl number is a dimensionless quantity occurring in magnetohydrodynamics which approximates the ratio of momentum diffusivity (viscosity) ... more

Area of a triangle (by the tangent of an acute or obtuse angle of the triangle)

A triangle is a polygon with three edges and three vertices. In a scalene triangle, all sides are unequal and equivalently all angles are unequal. The area ... more

Motor velocity constant

The constant Kv (motor velocity constant, or the back EMF constant) is a value used to describe characteristics of electrical ... more

Shear Modulus

In materials science, shear modulus or modulus of rigidity, denoted by G, or sometimes S or μ, is defined as the ratio of shear stress to the shear strain. ... more

Porosity

The volume of the voids of a soil over the total volume of the sample defines the porosity of a soil. Used in geology, hydrogeology, soil science, and ... more

Paschen's Law

In standard conditions at atmospheric pressure, gas serves as an excellent insulator, requiring the application of a significant voltage before breaking ... more

Worksheet 306

Calculate the force the biceps muscle must exert to hold the forearm and its load as shown in the figure below, and compare this force with the weight of the forearm plus its load. You may take the data in the figure to be accurate to three significant figures.


(a) The figure shows the forearm of a person holding a book. The biceps exert a force FB to support the weight of the forearm and the book. The triceps are assumed to be relaxed. (b) Here, you can view an approximately equivalent mechanical system with the pivot at the elbow joint

Strategy

There are four forces acting on the forearm and its load (the system of interest). The magnitude of the force of the biceps is FB, that of the elbow joint is FE, that of the weights of the forearm is wa , and its load is wb. Two of these are unknown FB, so that the first condition for equilibrium cannot by itself yield FB . But if we use the second condition and choose the pivot to be at the elbow, then the torque due to FE is zero, and the only unknown becomes FB .

Solution

The torques created by the weights are clockwise relative to the pivot, while the torque created by the biceps is counterclockwise; thus, the second condition for equilibrium (net τ = 0) becomes

Force (Newton's second law)
Torque
Force (Newton's second law)
Torque

Note that sin θ = 1 for all forces, since θ = 90º for all forces. This equation can easily be solved for FB in terms of known quantities,yielding. Entering the known values gives

Mechanical equilibrium - 3=3 Torque example

which yields

Torque
Addition

Now, the combined weight of the arm and its load is known, so that the ratio of the force exerted by the biceps to the total weight is

Division

Discussion

This means that the biceps muscle is exerting a force 7.38 times the weight supported.

Reference : OpenStax College,College Physics. OpenStax College. 21 June 2012.
http://openstaxcollege.org/textbooks/college-physics
Creative Commons License : http://creativecommons.org/licenses/by/3.0/

Pressure

Pressure (symbol: p or P) is the ratio of force to the area over which that force is distributed.

Pressure is force per unit area applied in a ... more

Specific gravity of solids

Silts, sands and gravels are classified by their size, and hence they may consist of a variety of minerals. Owing to the stability of quartz compared to ... more

Wavelength - Sinusoidal Wave

In physics, the wavelength of a sinusoidal wave is the spatial period of the wave—the distance over which the wave’s shape repeats, and the inverse ... more

...can't find what you're looking for?

Create a new formula