'

Search results

Found 1373 matches
Settling velocity (Stokes law)

Stokes’ law can be used to calculate the viscosity of a fluid. Stokes’ law is also important in the study for Viscous Drag , Terminal Velocity ... more

Tension to restrain a floating object

Archimedes’ principle states that “Any object, wholly or partially immersed in a fluid, is buoyed up by a force equal to the weight of the ... more

Stokes' law (Excess force due to the difference of the weight of the sphere and the buoyancy on the sphere)

The weight of an object is the force on the object due to gravity. Buoyancy is an upward force exerted by a fluid that opposes the weight of an immersed ... more

Channel bed pressure (at the bed of an open channel)

The depth–slope product is used to calculate the shear stress at the bed of an open channel containing fluid that is undergoing steady, uniform flow. The ... more

Conical pendulum

A conical pendulum is a weight (or bob) fixed on the end of a string (or rod) suspended from a pivot. Its construction is similar to an ordinary pendulum; ... more

Worksheet 306

Calculate the force the biceps muscle must exert to hold the forearm and its load as shown in the figure below, and compare this force with the weight of the forearm plus its load. You may take the data in the figure to be accurate to three significant figures.


(a) The figure shows the forearm of a person holding a book. The biceps exert a force FB to support the weight of the forearm and the book. The triceps are assumed to be relaxed. (b) Here, you can view an approximately equivalent mechanical system with the pivot at the elbow joint

Strategy

There are four forces acting on the forearm and its load (the system of interest). The magnitude of the force of the biceps is FB, that of the elbow joint is FE, that of the weights of the forearm is wa , and its load is wb. Two of these are unknown FB, so that the first condition for equilibrium cannot by itself yield FB . But if we use the second condition and choose the pivot to be at the elbow, then the torque due to FE is zero, and the only unknown becomes FB .

Solution

The torques created by the weights are clockwise relative to the pivot, while the torque created by the biceps is counterclockwise; thus, the second condition for equilibrium (net τ = 0) becomes

Force (Newton's second law)
Torque
Force (Newton's second law)
Torque

Note that sin θ = 1 for all forces, since θ = 90º for all forces. This equation can easily be solved for FB in terms of known quantities,yielding. Entering the known values gives

Mechanical equilibrium - 3=3 Torque example

which yields

Torque
Addition

Now, the combined weight of the arm and its load is known, so that the ratio of the force exerted by the biceps to the total weight is

Division

Discussion

This means that the biceps muscle is exerting a force 7.38 times the weight supported.

Reference : OpenStax College,College Physics. OpenStax College. 21 June 2012.
http://openstaxcollege.org/textbooks/college-physics
Creative Commons License : http://creativecommons.org/licenses/by/3.0/

Gravitational Acceleration

Gravity gives weight to physical objects and causes them to fall toward the ground when dropped.
If Μ is a point mass or the mass of a sphere with ... more

Friction Loss (laminar flow)

In fluid flow, friction loss (or skin friction) is the loss of pressure or “head” that occurs in pipe or duct flow due to the effect of the fluid’s ... more

Vis-Viva Equation with standard gravitational parameter

In astrodynamics, the vis viva equation, also referred to as orbital energy conservation equation, is one of the fundamental equations that govern the ... more

Allowable Strength Design Load combination (eq5a)

In structural engineering, a structure is a body or combination of pieces of rigid bodies in space to form a fitness system for supporting loads. ... more

...can't find what you're looking for?

Create a new formula