Search results

Found 1036 matches
Worksheet 334

In a video game design, a map shows the location of other characters relative to the player, who is situated at the origin, and the direction they are facing. A character currently shows on the map at coordinates (-3, 5). If the player rotates counterclockwise by 20 degrees, then the objects in the map will correspondingly rotate 20 degrees clockwise. Find the new coordinates of the character.

To rotate the position of the character, we can imagine it as a point on a circle, and we will change the angle of the point by 20 degrees. To do so, we first need to find the radius of this circle and the original angle.

Drawing a right triangle inside the circle, we can find the radius using the Pythagorean Theorem:

Pythagorean theorem (right triangle)

To find the angle, we need to decide first if we are going to find the acute angle of the triangle, the reference angle, or if we are going to find the angle measured in standard position. While either approach will work, in this case we will do the latter. By applying the cosine function and using our given information we get

Cosine function
Subtraction

While there are two angles that have this cosine value, the angle of 120.964 degrees is in the second quadrant as desired, so it is the angle we were looking for.

Rotating the point clockwise by 20 degrees, the angle of the point will decrease to 100.964 degrees. We can then evaluate the coordinates of the rotated point

For x axis:

Cosine function

For y axis:

Sine function

The coordinates of the character on the rotated map will be (-1.109, 5.725)

Reference : PreCalculus: An Investigation of Functions,Edition 1.4 © 2014 David Lippman and Melonie Rasmussen
http://www.opentextbookstore.com/precalc/
Creative Commons License : http://creativecommons.org/licenses/by-sa/3.0/us/

Triple-angle's sine (related to the sine of the single angle)

Trigonometric identities are equalities that involve trigonometric functions and are true for every single value of the occurring variables. Geometrically, ... more

Triple-angle's cosine (related to the cosine of the single angle)

rigonometric identities are equalities that involve trigonometric functions and are true for every single value of the occurring variables. Geometrically, ... more

Double angle's sine (related to the sine and cosine)

Trigonometric identities are equalities that involve trigonometric functions and are true for every single value of the occurring variables. Geometrically, ... more

Double-angle's cosine( related to the cosine and the sine)

rigonometric identities are equalities that involve trigonometric functions and are true for every single value of the occurring variables. Geometrically, ... more

Product of the inradius and circumradius of a triangle

A circumscribed circle or circumcircle of a triangle is a circle which passes through all the vertices of the triangle. The center of this circle is called ... more

Area of a triangle (Heron's formula)

In geometry, Heron’s formula (sometimes called Hero’s formula), named after Hero of Alexandria, gives the area of a triangle by requiring no ... more

Relation between the sides, the dinstances of the orthocenter from the vertices and the circumradius of a triangle

Altitude of a triangle is a line segment through a vertex and perpendicular to a line containing the base (the opposite side of the triangle). This line ... more

Stewart's Theorem ( for triangle's medians)

Stewart’s theorem yields a relation between the length of the sides of the triangle and the length of a cevian of the triangle. A cevian is any line ... more

Length of the internal bisector of a triangle

An angle bisector of a triangle is a straight line through a vertex which cuts the corresponding angle in half. The three angle bisectors intersect in a ... more

...can't find what you're looking for?

Create a new formula