
TEK
Online Resources
Tutorial Videos
#
Games and Practice
English
Spanish
RC1
A.10(A) add and subtract polynomials of degree one and degree two
Simplify variable expressions involving like terms and the distributive property
A.10(B) multiply polynomials of degree one and degree two
Model polynomials with algebra tiles
A.10(C) determine the quotient of a polynomial of degree one and polynomial of degree two when divided by a polynomial of degree one and polynomial of degree two when the degree of the divisor does not exceed the degree of the dividend
A.10(D) rewrite polynomial expressions of degree one and degree two in equivalent forms using the distributive property
Simplify polynomial expression using the distributive property
Simplificar la expresión polinómica mediante la propiedad distributiva
A.10(E) factor, if possible, trinomials with real factors in the form ax2 + bx + c, including perfect square trinomials of degree two
Factor quadratics with leading coefficient 1
Factor quadratics with other leading coefficients
A.10(F) decide if a binomial can be written as the difference of two squares and, if possible, use the structure of a difference of two squares to rewrite the binomial
A.11(A) simplify numerical radical expressions involving square roots
A.11(B) simplify numeric and algebraic expressions using the laws of exponents, including integral and rational exponents
Multiplication and division with exponents
Simplify expressions involving exponents
A.12(A) decide whether relations represented verbally, tabularly, graphically, and symbolically define a function
A.12(B) evaluate functions, expressed in function notation, given one or more elements in their domains
Evaluate function rules II
Find values using function graphsA.12(C) identify terms of arithmetic and geometric sequences when the sequences are given in function form using recursive processes
A.12(D) write a formula for the nth term of arithmetic and geometric sequences, given the value of several of their terms
A.12(E) solve mathematic and scientific formulas, and other literal equations, for a specified variable
RC2
A.3(A) determine the slope of a line given a table of values, a graph, two points on the line, and an equation written in various forms, including y = mx + b, Ax + By = C, and y – y1 = m(x – x1)
A.3(B) calculate the rate of change of a linear function represented tabularly, graphically, or algebraically in context of mathematical and realworld problems
A.3(C) graph linear functions on the coordinate plane and identify key features, including xintercept, yintercept, zeros, and slope, in mathematical and realworld problems
A.3(D) graph the solution set of linear inequalities in two variables on the coordinate plane
A.3(E) determine the effects on the graph of the parent function f(x) = x when f(x) is replaced by af(x), f(x) + d, f(x – c), f(bx) for specific values o f a, b, c, and d
A.3(F) graph systems of two linear equations in two variables on the coordinate plane and determine the solutions if they exist
Solve a system of equations by graphing
Find the number of solutions to a system of equations by graphing
A.3(G) estimate graphically the solutions to systems of two linear equations with two variables in realworld problems
A.3(H) graph the solution set of systems of two linear inequalities in two variables on the coordinate plane
A.4(A) calculate, using technology, the correlation coefficient between two quantitative variables and interpret this quantity as a measure of the strength of the linear association
A.4(B) compare and contrast association and causation in realworld problems
n/a
n/a
A.4(C) write, with and without technology, linear functions that provide a reasonable fit to data to estimate solutions and make predictions for realworld problems
RC3
A.2(A) determine the domain and range of a linear function in mathematical problems; determine reasonable domain and range values for realworld situations, both continuous and discrete; and represent domain and range using inequalities
A.2(B) write linear equations in two variables in various forms, including y = mx + b, Ax + By = C, and y – y1 = m(x – x1), given one point and the slope and given two points
A.2(C) write linear equations in two variables given a table of values, a graph, and a verbal description
Slopeintercept form: write an equation from a graph
A.2(D) write and solve equations involving direct variation
Find the constant of variation
A.2(E) write the equation of a line that contains a given point and is parallel to a given line
A.2(F) write the equation of a line that contains a given point and is perpendicular to a given line
A.2(G) write an equation of a line that is parallel or perpendicular to the x or yaxis and determine whether the slope of the line is zero or undefined
A.2(H) write linear inequalities in two variables given a table of values, a graph, and a verbal description
A.2(I) write systems of two linear equations given a table of values, a graph, and a verbal description
A.5(A) solve linear equations in one variable, including those for which the application of the distributive property is necessary and for which variables are included on both sides
Model and solve equations using algebra tiles
Solve onestep linear equations
A.5(B) solve linear inequalities in one variable, including those for which the application of the distributive property is necessary and for which variables are included on both sides
Does (x, y) satisfy the inequality?
A.5(C) solve systems of two linear equations with two variables for mathematical and realworld problems
Solve a system of equations using substitution: word problems
Solve a system of equations using elimination: word problems
RC4
A.6(A) determine the domain and range of quadratic functions and represent the domain and range using inequalities
A.6(B) write equations of quadratic functions given the vertex and another point on the graph, write the equation in vertex form (f(x) = a(x – h) 2 + k), and rewrite the equation from vertex form to standard form (f(x) = ax2 + bx + c)
A.6(C) write quadratic functions when given real solutions and graphs of their related equations
A.7(A) graph quadratic functions on the coordinate plane and use the graph to identify key attributes, if possible, including xintercept, yintercept, zeros, maximum value, minimum values, vertex, and the equation of the axis of symmetry
A.7(B) describe the relationship between the linear factors of quadratic expressions and the zeros of their associated quadratic functions
A.7(C) determine the effects on the graph of the parent function f(x) = x2 when f(x) is replaced by af(x), f(x) + d, f(x – c), f(bx) for specific values o f a, b, c, and d
A.8(A) solve quadratic equations having real solutions by factoring, taking square roots, completing the square, and applying the quadratic formula
Solve a quadratic equation using square roots
Solve an equation using the zero product property
Solve a quadratic equation by factoring
Solve a quadratic by completing the square
A.8(B) write, using technology, quadratic functions that provide a reasonable fit to data to estimate solutions and make predictions for realworld problems
RC5
A.9(A) determine the domain and range of exponential functions of the form f(x) = abx and represent the domain and range using inequalities
n/a
A.9(B) interpret the meaning of the values of a and b in exponential functions of the form f(x) = abx in realworld problems
A.9(C) write exponential functions in the form f(x) = abx (where b is a rational number) to describe problems arising from mathematical and realworld situations, including growth and decay
A.9(D) graph exponential functions that model growth and decay and identify key features, including yintercept and asymptote, in mathematical and realworld problems
A.9(E) write, using technology, exponential functions that provide a reasonable fit to data and make predictions for realworld problems