'

Search results

Found 1570 matches
Tangent of the sum of two angles (Bhāskara formula)

Trigonometric identities are equalities that involve trigonometric functions and are true for every single value of the occurring variables. Geometrically, ... more

Worksheet 334

In a video game design, a map shows the location of other characters relative to the player, who is situated at the origin, and the direction they are facing. A character currently shows on the map at coordinates (-3, 5). If the player rotates counterclockwise by 20 degrees, then the objects in the map will correspondingly rotate 20 degrees clockwise. Find the new coordinates of the character.

To rotate the position of the character, we can imagine it as a point on a circle, and we will change the angle of the point by 20 degrees. To do so, we first need to find the radius of this circle and the original angle.

Drawing a right triangle inside the circle, we can find the radius using the Pythagorean Theorem:

Pythagorean theorem (right triangle)

To find the angle, we need to decide first if we are going to find the acute angle of the triangle, the reference angle, or if we are going to find the angle measured in standard position. While either approach will work, in this case we will do the latter. By applying the cosine function and using our given information we get

Cosine function
Subtraction

While there are two angles that have this cosine value, the angle of 120.964 degrees is in the second quadrant as desired, so it is the angle we were looking for.

Rotating the point clockwise by 20 degrees, the angle of the point will decrease to 100.964 degrees. We can then evaluate the coordinates of the rotated point

For x axis:

Cosine function

For y axis:

Sine function

The coordinates of the character on the rotated map will be (-1.109, 5.725)

Reference : PreCalculus: An Investigation of Functions,Edition 1.4 © 2014 David Lippman and Melonie Rasmussen
http://www.opentextbookstore.com/precalc/
Creative Commons License : http://creativecommons.org/licenses/by-sa/3.0/us/

Law of tangents for the triangles

The law of tangents is a statement about the relationship between the tangents of two angles of a triangle and the lengths of the opposing sides.The law of ... more

Tangent of the sum of three angles

Trigonometric identities are equalities that involve trigonometric functions and are true for every single value of the occurring variables. Geometrically, ... more

Double-angle's cosine (related to the tangent)

Trigonometric identities are equalities that involve trigonometric functions and are true for every single value of the occurring variables. Geometrically, ... more

Area of a triangle (by the tangent of an acute or obtuse angle of the triangle)

A triangle is a polygon with three edges and three vertices. In a scalene triangle, all sides are unequal and equivalently all angles are unequal. The area ... more

Double-angle's sine (related to the tangent)

Trigonometric identities are equalities that involve trigonometric functions and are true for every single value of the occurring variables. Geometrically, ... more

Tangent function

The trigonometric functions (also called the circular functions) are functions of an angle. They relate the angles of a triangle to the lengths of its ... more

Law of cotangents (in term of tangents)

In trigonometry, the law of cotangents is a relationship among the lengths of the sides of a triangle and the cotangents of the halves of the three angles. ... more

Relation between inradius,exradii and sides of a right triangle

Right triangle or right-angled triangle is a triangle in which one angle is a right angle (that is, a 90-degree angle). The incircle or inscribed circle of ... more

Secant of the sum of three angles

Trigonometric identities are equalities that involve trigonometric functions and are true for every single value of the occurring variables. Geometrically, ... more

Cosecant of the sum of three angles

Trigonometric identities are equalities that involve trigonometric functions and are true for every single value of the occurring variables. Geometrically, ... more

Triple-angle's sine (related to the sine of the single angle)

Trigonometric identities are equalities that involve trigonometric functions and are true for every single value of the occurring variables. Geometrically, ... more

Triple-angle's cosine (related to the cosine of the single angle)

rigonometric identities are equalities that involve trigonometric functions and are true for every single value of the occurring variables. Geometrically, ... more

Relation between the inradius and exradii of a right triangle

Right triangle or right-angled triangle is a triangle in which one angle is a right angle (that is, a 90-degree angle). The incircle or inscribed circle of ... more

Tangent value calculator

Calculates the Tangent value of angle θ(in degrees). The tangent of an angle is the ratio of the length of the opposite side to an acute angle of a right ... more

Cosine function

The trigonometric functions (also called the circular functions) are functions of an angle. They relate the angles of a triangle to the lengths of its ... more

Double angle's sine (related to the sine and cosine)

Trigonometric identities are equalities that involve trigonometric functions and are true for every single value of the occurring variables. Geometrically, ... more

Double-angle's cosine( related to the cosine and the sine)

rigonometric identities are equalities that involve trigonometric functions and are true for every single value of the occurring variables. Geometrically, ... more

Cotangent function

The trigonometric functions (also called the circular functions) are functions of an angle. They relate the angles of a triangle to the lengths of its ... more

Sine function

The trigonometric functions (also called the circular functions) are functions of an angle. They relate the angles of a triangle to the lengths of its ... more

Sine of the sum of three angles

Trigonometric identities are equalities that involve trigonometric functions and are true for every single value of the occurring variables. Geometrically, ... more

Cosine of the sum of three angles

Trigonometric identities are equalities that involve trigonometric functions and are true for every single value of the occurring variables. Geometrically, ... more

One of the legs of a right triangle related to the inradius and the other leg.

Right triangle or right-angled triangle is a triangle in which one angle is a right angle (that is, a 90-degree angle). The incircle or inscribed circle of ... more

Length of internal bisector of an angle in triangle in relation to the opposite segments

In geometry, bisection is the division of something into two equal or congruent parts, usually by a line, which is then called a bisector. If the internal ... more

Radius of the incircle of a right triangle

Right triangle or right-angled triangle is a triangle in which one angle is a right angle (that is, a 90-degree angle). The incircle or inscribed circle ... more

Napoleon's theorem

In geometry, Napoleon’s theorem states that if equilateral triangles are constructed on the sides of any triangle, either all outward, or all inward, ... more

Sum of the circumradius and the inradius of a right triangle

Right triangle or right-angled triangle is a triangle in which one angle is a right angle (that is, a 90-degree angle). The incircle or inscribed circle of ... more

Area of an arbitrary triangle (incircle and excircles)

The incircle or inscribed circle of a triangle is the largest circle contained in the triangle; it touches (is tangent to) the three sides. The center of ... more

...can't find what you're looking for?

Create a new formula