'

Search results

Found 947 matches
One of the legs of a right triangle related to the inradius and the other leg.

Right triangle or right-angled triangle is a triangle in which one angle is a right angle (that is, a 90-degree angle). The incircle or inscribed circle of ... more

Relation between inradius,exradii and sides of a right triangle

Right triangle or right-angled triangle is a triangle in which one angle is a right angle (that is, a 90-degree angle). The incircle or inscribed circle of ... more

Radius of the incircle of a right triangle

Right triangle or right-angled triangle is a triangle in which one angle is a right angle (that is, a 90-degree angle). The incircle or inscribed circle ... more

Relation between the altitude to the hypotenuse and the legs of a right triangle

Right triangle or right-angled triangle is a triangle in which one angle is a right angle (that is, a 90-degree angle). Altitude of a triangle is a line ... more

Relation between the sides of an Equilateral triangle and its circumradius and inradius

An equilateral triangle is a triangle in which all three sides are equal. In traditional or Euclidean geometry, equilateral triangles are also equiangular; ... more

Area of a triangle (by the tangent of an acute or obtuse angle of the triangle)

A triangle is a polygon with three edges and three vertices. In a scalene triangle, all sides are unequal and equivalently all angles are unequal. The area ... more

Product of the inradius and circumradius of a triangle

A circumscribed circle or circumcircle of a triangle is a circle which passes through all the vertices of the triangle. The center of this circle is called ... more

Right Triangle (sides)

A right triangle (American English) or right-angled triangle (British English) is a triangle in which one angle is a right angle (that is, a 90-degree ... more

Relation between medians and circumradius for right triangle

Right triangle or right-angled triangle is a triangle in which one angle is a right angle (that is, a 90-degree angle). Median of a triangle is a line ... more

Relation between the inradius and exradii of a right triangle

Right triangle or right-angled triangle is a triangle in which one angle is a right angle (that is, a 90-degree angle). The incircle or inscribed circle of ... more

Euler's theorem (triangles)

The circumscribed circle or circumcircle of a triangle is a circle which passes through all the vertices of the triangle. The center of this circle is ... more

Euler line (distance between the centroid and the orthocenter of a triangle)

In geometry, the Euler line is a line determined from any triangle that is not equilateral. It passes through several important points determined from the ... more

Euler line (distance between the circumcenter and the orthocenter of a triangle)

In geometry, the Euler line is a line determined from any triangle that is not equilateral. It passes through several important points determined from the ... more

Area of a triangle (related to the circumradius and two of its altitudes)

A circumscribed circle or circumcircle of a triangle is a circle which passes through all the vertices of the triangle. Its radius is called the ... more

Euler line (distance between the centroid and the circumcenter of a triangle)

In geometry, the Euler line is a line determined from any triangle that is not equilateral. It passes through several important points determined from the ... more

Morley's trisector theorem (area)

Morley’s trisector theorem states that in any triangle, the three points of intersection of the adjacent angle trisectors form an equilateral triangle, ... more

Morley's trisector theorem

Morley’s trisector theorem states that in any triangle, the three points of intersection of the adjacent angle trisectors form an equilateral ... more

Pythagorean theorem (arbitrary triangle - acute angle)

Generalization of the Pythagorean theorem for the side opposite of the acute angle of an arbitrary triangle

... more

Relation between the sides, the dinstances of the orthocenter from the vertices and the circumradius of a triangle

Altitude of a triangle is a line segment through a vertex and perpendicular to a line containing the base (the opposite side of the triangle). This line ... more

Relation between the inradius,exradii,circumradius and the distances of the orthocenter from the vertices of a triangle

Altitude of a triangle is a line segment through a vertex and perpendicular to a line containing the base (the opposite side of the triangle). This line ... more

Worksheet 334

In a video game design, a map shows the location of other characters relative to the player, who is situated at the origin, and the direction they are facing. A character currently shows on the map at coordinates (-3, 5). If the player rotates counterclockwise by 20 degrees, then the objects in the map will correspondingly rotate 20 degrees clockwise. Find the new coordinates of the character.

To rotate the position of the character, we can imagine it as a point on a circle, and we will change the angle of the point by 20 degrees. To do so, we first need to find the radius of this circle and the original angle.

Drawing a right triangle inside the circle, we can find the radius using the Pythagorean Theorem:

Pythagorean theorem (right triangle)

To find the angle, we need to decide first if we are going to find the acute angle of the triangle, the reference angle, or if we are going to find the angle measured in standard position. While either approach will work, in this case we will do the latter. By applying the cosine function and using our given information we get

Cosine function
Subtraction

While there are two angles that have this cosine value, the angle of 120.964 degrees is in the second quadrant as desired, so it is the angle we were looking for.

Rotating the point clockwise by 20 degrees, the angle of the point will decrease to 100.964 degrees. We can then evaluate the coordinates of the rotated point

For x axis:

Cosine function

For y axis:

Sine function

The coordinates of the character on the rotated map will be (-1.109, 5.725)

Reference : PreCalculus: An Investigation of Functions,Edition 1.4 © 2014 David Lippman and Melonie Rasmussen
http://www.opentextbookstore.com/precalc/
Creative Commons License : http://creativecommons.org/licenses/by-sa/3.0/us/

Law of sines (related to circumdiameter)

The law of sines, sine law, sine formula, or sine rule relates the sine of an angle to the opposite side of an arbitrary triangle and the diameter of the ... more

Orthodiagonal quadrilateral ( circumradii of the four triangles)

A quadrilateral is a polygon with four sides (or edges) and four vertices or corners. An orthodiagonal quadrilateral is a quadrilateral in which the ... more

Law of cotangents (in term of tangents)

In trigonometry, the law of cotangents is a relationship among the lengths of the sides of a triangle and the cotangents of the halves of the three angles. ... more

Distance between the circumcenter and the incenter of a triange

A circumscribed circle or circumcircle of a triangle is a circle which passes through all the vertices of the triangle. The center of this circle is called ... more

Tangent value calculator

Calculates the Tangent value of angle θ(in degrees). The tangent of an angle is the ratio of the length of the opposite side to an acute angle of a right ... more

Interior perpendicular bisector of a triangle

The interior perpendicular bisector of a side of a triangle is the segment, falling entirely on and inside the triangle, of the line that perpendicularly ... more

Length of a side of an inscribed square in a triangle

Every acute triangle has three inscribed squares (squares in its interior such that all four of a square’s vertices lie on a side of the triangle, so ... more

Cosine value calculator

Calculates the Cosine value of angle θ(in degrees). The cosine of an angle is the ratio of the length of the adjacent side to an acute angle of a right ... more

...can't find what you're looking for?

Create a new formula