'

Search results

Found 1564 matches
Borda–Carnot equation

In fluid dynamics the Borda–Carnot equation is an empirical description of the mechanical energy losses of the fluid due to a (sudden) flow expansion. The ... more

Borda–Carnot equation (sudden expansion of a horizontal pipe)

In fluid dynamics the Borda–Carnot equation is an empirical description of the mechanical energy losses of the fluid due to a (sudden) flow expansion. The ... more

Borda–Carnot equation (Sudden contraction of a pipe)

Borda–Carnot equation is an empirical description of the mechanical energy losses of the fluid due to a (sudden) flow expansion. It describes how the total ... more

Borda–Carnot equation (for open channel flows)

In fluid dynamics the Borda–Carnot equation is an empirical description of the mechanical energy losses of the fluid due to a (sudden) flow expansion. The ... more

Sudden expansion of a pipe (total head loss)

n fluid dynamics the Borda–Carnot equation is an empirical description of the mechanical energy losses of the fluid due to a (sudden) flow expansion. The ... more

Friction Loss (hydraulic slope) - related to pressure change

In fluid flow, friction loss (or skin friction) is the loss of pressure or “head” that occurs in pipe or duct flow due to the effect of the fluid’s ... more

Prandtl–Meyer function

This entry marks fxSolver’s 2000th equation milestone and is a kind contribution by Reddit user ... more

Isentropic Relations for an Ideal Gas - Pressure and volume

In thermodynamics, an isentropic process is an idealized thermodynamic process that is adiabatic and in which the work transfers of the system are ... more

Friction Loss (laminar flow)

In fluid flow, friction loss (or skin friction) is the loss of pressure or “head” that occurs in pipe or duct flow due to the effect of the fluid’s ... more

Isentropic Relations for an Ideal Gas - Temperature and density

In thermodynamics, an isentropic process is an idealized thermodynamic process that is adiabatic and in which the work transfers of the system are ... more

Isentropic Relations for an Ideal Gas - Temperature and Pressure

In thermodynamics, an isentropic process is an idealized thermodynamic process that is adiabatic and in which the work transfers of the system are ... more

West number

The West number is an empirical parameter used to characterize the performance of Stirling engines and other Stirling systems. A Stirling engine is a heat ... more

Density ( temperature dependence)

The density, or more precisely, the volumetric mass density, of a substance is its mass per unit volume. The density of a material varies with temperature ... more

Shock Diamond - distance from the nozzle

Shock diamonds (also known as Mach diamonds, Mach disks, Mach rings, doughnut tails or thrust diamonds) are a formation of standing wave patterns that ... more

Mach wave (angle)

In fluid dynamics, a Mach wave is a pressure wave traveling with the speed of sound caused by a slight change of pressure added to a compressible flow. ... more

Head loss in terms of volumetric flow rate

Hydraulic head or piezometric head is a specific measurement of liquid pressure above a geodetic datum.
In any real moving fluid, energy is dissipated ... more

Friction Loss (turbulent flow)

In fluid flow, friction loss (or skin friction) is the loss of pressure or “head” that occurs in pipe or duct flow due to the effect of the fluid’s ... more

Exhaust Gas Velocity

A rocket engine nozzle is a propelling nozzle (usually of the de Laval type) used in a rocket engine to expand and accelerate the combustion gases produced ... more

Worksheet 300

Calculate the Reynolds number N′R for a ball with a 7.40-cm diameter thrown at 40.0 m/s.

Strategy

We can use the Reynolds number equation calculate N’R , since all values in it are either given or can be found in tables of density and viscosity.

Solution

We first find the kinematic viscosity values:

Kinematic Viscosity

Substituting values into the equation for N’R yields:

Reynolds number

Discussion

This value is sufficiently high to imply a turbulent wake. Most large objects, such as airplanes and sailboats, create significant turbulence as they move. As noted before, the Bernoulli principle gives only qualitatively-correct results in such situations.

Reference : OpenStax College,College Physics. OpenStax College. 21 June 2012.
http://openstaxcollege.org/textbooks/college-physics
Creative Commons License : http://creativecommons.org/licenses/by/3.0/

Rayleigh number (for geophysical applications)

In fluid mechanics, the Rayleigh number (Ra) for a fluid is a dimensionless number associated with buoyancy-driven flow, also known as free convection or ... more

Kozeny-Carman equation

The Kozeny–Carman equation (or Carman-Kozeny equation) is a relation used in the field of fluid dynamics to calculate the pressure drop of a fluid flowing ... more

Friction Loss (hydraulic slope)

In fluid flow, friction loss (or skin friction) is the loss of pressure or “head” that occurs in pipe or duct flow due to the effect of the fluid’s ... more

Darcy Weisbach equation (head loss)

In fluid dynamics, the Darcy–Weisbach equation is a phenomenological equation, which relates the head loss — or pressure loss — due to friction along a ... more

Bernoulli's principle

Bernoulli’s principle states that for an inviscid flow, an increase in the speed of the fluid occurs simultaneously with an increase in dynamic ... more

Dynamic Pressure

In incompressible fluid dynamics dynamic pressure (indicated with q, or Q, and sometimes called velocity pressure) is the quantity defined as ... more

Rayleigh number (for geophysical applications - related to bottom heating of the mantle from the core)

In fluid mechanics, the Rayleigh number (Ra) for a fluid is a dimensionless number associated with buoyancy-driven flow, also known as free convection or ... more

Pumping power

The power imparted into a fluid increases the energy of the fluid per unit volume. Thus the power relationship is between the conversion of the mechanical ... more

Bernoulli’s Equation (conservation of energy)

Bernoulli’s equation states that for an incompressible, frictionless fluid, the above mentioned sum is constant. If we follow a small volume of fluid along ... more

Beale number

In mechanical engineering, the Beale number is a parameter that characterizes the performance of Stirling engines. It is often used to estimate the power ... more

Friction velocity (shear velocity)

Friction velocity, is a form by which a shear stress may be re-written in units of velocity. It is useful as a method in fluid mechanics to compare true ... more

...can't find what you're looking for?

Create a new formula