# Search results

“Clearing the neighbourhood around its orbit” is a criterion for a celestial body to be considered a planet in the Solar System. This was one ... more

Precession is a change in the orientation of the rotational axis of a rotating body. In an appropriate reference frame it can be defined as a change in the ... more

Hyperbola is the set of all points in the plane, such that the absolute value of the difference of each of the distances from two fixed points is constant. ... more

Hyperbola is the set of all points in the plane, such that the absolute value of the difference of each of the distances from two fixed points is constant. ... more

Black-body radiation is the thermal electromagnetic radiation within or surrounding a body in thermodynamic equilibrium with its environment, or emitted by ... more

Crest vertical curves are curves which, when viewed from the side, are convex upwards. This includes vertical curves at hill crests, but it also includes ... more

Crest vertical curves are curves which, when viewed from the side, are convex upwards. This includes vertical curves at hill crests, but it also includes ... more

In classical mechanics, linear momentum or translational momentum (pl. momenta; SI unit kg m/s, or equivalently, N s) is the product of the mass and ... more

**(a)** The figure shows the forearm of a person holding a book. The biceps exert a force **F _{B}** to support the weight of the forearm and the book. The triceps are assumed to be relaxed.

**(b)**Here, you can view an approximately equivalent mechanical system with the pivot at the elbow joint

Strategy

There are four forces acting on the forearm and its load (the system of interest). The magnitude of the force of the biceps is **F _{B}**, that of the elbow joint is

**F**, that of the weights of the forearm is

_{E}**w**, and its load is

_{a}**w**. Two of these are unknown

_{b}**F**, so that the first condition for equilibrium cannot by itself yield

_{B}**F**. But if we use the second condition and choose the pivot to be at the elbow, then the torque due to

_{B}**F**is zero, and the only unknown becomes

_{E}**F**.

_{B}Solution

The torques created by the weights are clockwise relative to the pivot, while the torque created by the biceps is counterclockwise; thus, the second condition for equilibrium (net **τ = 0**) becomes

Note that **sin θ = 1** for all forces, since **θ = 90º** for all forces. This equation can easily be solved for **F _{B}** in terms of known quantities,yielding. Entering the known values gives

which yields

Now, the combined weight of the arm and its load is known, so that the ratio of the force exerted by the biceps to the total weight is

Discussion

This means that the biceps muscle is exerting a force **7.38** times the weight supported.

Reference : OpenStax College,College Physics. OpenStax College. 21 June 2012.

http://openstaxcollege.org/textbooks/college-physics

Creative Commons License : http://creativecommons.org/licenses/by/3.0/

...can't find what you're looking for?

Create a new formula
Calculate the force the biceps muscle must exert to hold the forearm and its load as shown in the figure below, and compare this force with the weight of the forearm plus its load. You may take the data in the figure to be accurate to three significant figures.