'

Search results

Found 779 matches
Coefficient of restitution ( for an object)

The coefficient of restitution (COR) of two colliding objects is typically a positive real number between 0.0 and 1.0 ... more

Force exerted by magnetic field

An electromagnet is a type of magnet in which the magnetic field is produced by electric current. The magnetic field disappears when the current is turned ... more

Magnification of the microscope

Optical magnification is the ratio between the apparent size of an object (or its size in an image) and its true size, and thus it is a dimensionless ... more

Triangle wave (in trigonometric terms)

A triangle wave is a non-sinusoidal waveform named for its triangular shape. It is a periodic, piecewise linear, continuous real function. Like a square ... more

Hall coefficient

The Hall effect is the production of a voltage difference (the Hall voltage) across an electrical conductor, transverse to an electric current in the ... more

Indent depth for Vickers hardness test

The basic principle of the Vickers hardness test, as with all common measures of hardness, is to observe the questioned material’s ability to resist ... more

Worksheet 296

(a) Calculate the buoyant force on 10,000 metric tons (1.00×10 7 kg) of solid steel completely submerged in water, and compare this with the steel’s weight.

(b) What is the maximum buoyant force that water could exert on this same steel if it were shaped into a boat that could displace 1.00×10 5 m 3 of water?

Strategy for (a)

To find the buoyant force, we must find the weight of water displaced. We can do this by using the densities of water and steel given in Table [insert table #] We note that, since the steel is completely submerged, its volume and the water’s volume are the same. Once we know the volume of water, we can find its mass and weight

First, we use the definition of density to find the steel’s volume, and then we substitute values for mass and density. This gives :

Density

Because the steel is completely submerged, this is also the volume of water displaced, Vw. We can now find the mass of water displaced from the relationship between its volume and density, both of which are known. This gives:

Density

By Archimedes’ principle, the weight of water displaced is m w g , so the buoyant force is:

Force (Newton's second law)

The steel’s weight is 9.80×10 7 N , which is much greater than the buoyant force, so the steel will remain submerged.

Strategy for (b)

Here we are given the maximum volume of water the steel boat can displace. The buoyant force is the weight of this volume of water.

The mass of water displaced is found from its relationship to density and volume, both of which are known. That is:

Density

The maximum buoyant force is the weight of this much water, or

Force (Newton's second law)

Discussion

The maximum buoyant force is ten times the weight of the steel, meaning the ship can carry a load nine times its own weight without sinking.

Reference : OpenStax College,College Physics. OpenStax College. 21 June 2012.
http://openstaxcollege.org/textbooks/college-physics
Creative Commons License : http://creativecommons.org/licenses/by/3.0/

Sag curve length when S<L (Vertical curves for highway design)

When a driver is driving on a sag curve at night, the sight distance is limited by the higher grade in front of the vehicle. This distance must be long ... more

Sag curve length when S>L (Vertical curves for highway design)

When a driver is driving on a sag curve at night, the sight distance is limited by the higher grade in front of the vehicle. This distance must be long ... more

Thermal de Broglie wavelength (Massless particles)

The thermal de Broglie wavelength is the average de Broglie wavelength of the gas particles in an ideal gas at the specified temperature. We can take the ... more

...can't find what you're looking for?

Create a new formula