'

Search results

Found 977 matches
Nose cone Spherically blunted tangent ogive( X- coordinate of the tangency point )

The nose cone section of any vehicle or body meant to travel through a compressible fluid medium (such as a rocket or aircraft, missile or bullet) is ... more

Total force on a contact area between a rigid conical indenter and an elastic half-space related to the total depth

ontact mechanics is the study of the deformation of solids that touch each other at one or more points. Hertzian contact stress refers to the localized ... more

Radius of Inertial circle ( by Coriolis effect)

In physics, the Coriolis effect is a deflection of moving objects when they are viewed in a rotating reference frame.
An air or water mass moving with ... more

Numerical Aperture

In optics, the numerical aperture (NA) of an optical system is a dimensionless number that characterizes the range of angles over which the system can ... more

Worksheet 306

Calculate the force the biceps muscle must exert to hold the forearm and its load as shown in the figure below, and compare this force with the weight of the forearm plus its load. You may take the data in the figure to be accurate to three significant figures.


(a) The figure shows the forearm of a person holding a book. The biceps exert a force FB to support the weight of the forearm and the book. The triceps are assumed to be relaxed. (b) Here, you can view an approximately equivalent mechanical system with the pivot at the elbow joint

Strategy

There are four forces acting on the forearm and its load (the system of interest). The magnitude of the force of the biceps is FB, that of the elbow joint is FE, that of the weights of the forearm is wa , and its load is wb. Two of these are unknown FB, so that the first condition for equilibrium cannot by itself yield FB . But if we use the second condition and choose the pivot to be at the elbow, then the torque due to FE is zero, and the only unknown becomes FB .

Solution

The torques created by the weights are clockwise relative to the pivot, while the torque created by the biceps is counterclockwise; thus, the second condition for equilibrium (net τ = 0) becomes

Force (Newton's second law)
Torque
Force (Newton's second law)
Torque

Note that sin θ = 1 for all forces, since θ = 90º for all forces. This equation can easily be solved for FB in terms of known quantities,yielding. Entering the known values gives

Mechanical equilibrium - 3=3 Torque example

which yields

Torque
Addition

Now, the combined weight of the arm and its load is known, so that the ratio of the force exerted by the biceps to the total weight is

Division

Discussion

This means that the biceps muscle is exerting a force 7.38 times the weight supported.

Reference : OpenStax College,College Physics. OpenStax College. 21 June 2012.
http://openstaxcollege.org/textbooks/college-physics
Creative Commons License : http://creativecommons.org/licenses/by/3.0/

Torsion

In solid mechanics, torsion is the twisting of an object due to an applied torque. It is expressed in newton metres (N·m) or foot-pound force (ft·lbf). In ... more

Cantilever Euler Beam - Displacement

Euler–Bernoulli beam theory (also known as engineer’s beam theory or classical beam theory) is a simplification of the linear theory of elasticity ... more

Conical pendulum

A conical pendulum is a weight (or bob) fixed on the end of a string (or rod) suspended from a pivot. Its construction is similar to an ordinary pendulum; ... more

Height of a Circular Segment

Circular segment is a region of a circle which is “cut off” from the rest of the circle by a secant or a chord. More formally, a Circular segment is a ... more

Difference between the maximum and the minimum height of a oloid

Oloid is the convex hull of a skeletal frame made by placing two linked congruent circles in perpendicular planes, so that the center of each circle lies ... more

...can't find what you're looking for?

Create a new formula