Search results

Found 783 matches
Moment of inertia of a solid cuboid ( Axis of rotation at the longest diagonal )

oment of inertia is the mass property of a rigid body that defines the torque needed for a desired angular acceleration about an axis of rotation. Moment ... more

Moment of inertia of a solid cube ( Axis of rotation at the center of a face)

Moment of inertia is the mass property of a rigid body that defines the torque needed for a desired angular acceleration about an axis of rotation. Moment ... more

Spirograph (rotation angle of the inner circle)

Spirograph is a geometric drawing toy that produces mathematical roulette curves of the variety technically known as hypotrochoids and epitrochoids.
A ... more

Auger electron spectroscopy - emitted electron kinetic energy

Auger electron spectroscopy is a common analytical technique used specifically in the study of surfaces and, more generally, in the area of materials ... more

Physical Pendulum

A pendulum is a mass that is attached to a pivot, from which it can swing freely. Pendulum consisting of an actual object allowed to rotate freely around a ... more

Stress in thin-walled pressure spherical vessels

Pressure vessels are held together against the gas pressure due to tensile forces within the walls of the container. Stress in a shallow-walled pressure ... more

Angular Acceleration

Torque, moment, or moment of force is the tendency of a force to rotate an object about an axis, fulcrum, or pivot.
Moment of inertia is the mass ... more

Angular Momentum

In physics, angular momentum, moment of momentum, or rotational momentum is a measure of the amount of rotation an object has, taking into account its ... more

Worksheet 333

A typical small rescue helicopter, like the one in the Figure below, has four blades, each is 4.00 m long and has a mass of 50.0 kg. The blades can be approximated as thin rods that rotate about one end of an axis perpendicular to their length. The helicopter has a total loaded mass of 1000 kg. (a) Calculate the rotational kinetic energy in the blades when they rotate at 300 rpm. (b) Calculate the translational kinetic energy of the helicopter when it flies at 20.0 m/s, and compare it with the rotational energy in the blades. (c) To what height could the helicopter be raised if all of the rotational kinetic energy could be used to lift it?

The first image shows how helicopters store large amounts of rotational kinetic energy in their blades. This energy must be put into the blades before takeoff and maintained until the end of the flight. The engines do not have enough power to simultaneously provide lift and put significant rotational energy into the blades.
The second image shows a helicopter from the Auckland Westpac Rescue Helicopter Service. Over 50,000 lives have been saved since its operations beginning in 1973. Here, a water rescue operation is shown. (credit: 111 Emergency, Flickr)


Rotational and translational kinetic energies can be calculated from their definitions. The last part of the problem relates to the idea that energy can change form, in this case from rotational kinetic energy to gravitational potential energy.

Solution for (a)

We must convert the angular velocity to radians per second and calculate the moment of inertia before we can find Er . The angular velocity ω for 1 r.p.m is

Angular velocity

and for 300 r.p.m


The moment of inertia of one blade will be that of a thin rod rotated about its end.

Moment of Inertia - Rod end

The total I is four times this moment of inertia, because there are four blades. Thus,


and so The rotational kinetic energy is

Rotational energy

Solution for (b)

Translational kinetic energy is defined as

Kinetic energy ( related to the object 's velocity )

To compare kinetic energies, we take the ratio of translational kinetic energy to rotational kinetic energy. This ratio is


Solution for (c)

At the maximum height, all rotational kinetic energy will have been converted to gravitational energy. To find this height, we equate those two energies:

Potential energy


The ratio of translational energy to rotational kinetic energy is only 0.380. This ratio tells us that most of the kinetic energy of the helicopter is in its spinning blades—something you probably would not suspect. The 53.7 m height to which the helicopter could be raised with the rotational kinetic energy is also impressive, again emphasizing the amount of rotational kinetic energy in the blades.

Reference : OpenStax College,College Physics. OpenStax College. 21 June 2012.
Creative Commons License : http://creativecommons.org/licenses/by/3.0/


In solid mechanics, torsion is the twisting of an object due to an applied torque. It is expressed in newton metres (N·m) or foot-pound force (ft·lbf). In ... more

...can't find what you're looking for?

Create a new formula