'

Search results

Found 1234 matches
Lift-to-Drag Ratio - with wetted aspect ratio

In aerodynamics, the lift-to-drag ratio, or L/D ratio, is the amount of lift generated by a wing or vehicle, divided by the drag it creates by moving ... more

Lift-to-Drag Ratio

In aerodynamics, the lift-to-drag ratio, or L/D ratio, is the amount of lift generated by a wing or vehicle, divided by the drag it creates by moving ... more

Wing loading - turning radius

In aerodynamics, wing loading is the total weight of an aircraft divided by the area of its wing. The stalling speed of an aircraft in straight, level ... more

Thrust-to-Weight Ratio

Thrust-to-weight ratio (TWR) is a dimensionless ratio of thrust to weight of a rocket, jet engine, propeller engine, or a vehicle ... more

Supersonic/Hypersonic Lift-to-Drag Ratio

In aerodynamics, the lift-to-drag ratio, or L/D ratio, is the amount of lift generated by a wing or vehicle, divided by the drag it creates by moving ... more

Lift coefficient (at dynamic pressure)

The lift coefficient is a dimensionless coefficient that relates the lift generated by a lifting body to the associated reference area and the fluid ... more

Lift coefficient (for an airfoil section)

The lift coefficient is a dimensionless coefficient that relates the lift generated by a lifting body to the density of the fluid around the body, its ... more

Wind loading - takeoff speed

In aerodynamics, wing loading is the total weight of an aircraft divided by the area of its wing. The stalling speed of an aircraft in straight, level ... more

Thrust-to-Weight Ratio - Propeller-driven aircraft

Thrust-to-weight ratio (TWR) is a dimensionless ratio of thrust to weight of a rocket, jet engine, propeller engine, or a vehicle ... more

Karman line (lift force)

Karman line, lies at an altitude of 100 kilometers (62 mi) above the Earth’s sea level, and commonly represents the boundary between the ... more

Glide Ratio

Gliding flight is heavier-than-air flight without the use of thrust; the term volplaning also refers to this mode of flight in animals. It is employed by ... more

Energy–Maneuverability Theory (aircraft performance)

Energy–maneuverability theory is a model of aircraft performance. It was developed by Col. John Boyd, and is useful in describing an aircraft’s ... more

Wing loading - upward acceleration

In aerodynamics, wing loading is the total weight of an aircraft divided by the area of its wing. The stalling speed of an aircraft in straight, level ... more

Drag coefficient

Drag (sometimes called air resistance, a type of friction, or fluid resistance, another type of friction or fluid friction) refers to forces acting ... more

Velocity of a falling object

In fluid dynamics, drag (sometimes called air resistance, a type of friction, or fluid resistance, another type of friction or fluid friction) is a force ... more

Power in a reference system(aerodynamic drag)

In fluid dynamics, drag (sometimes called air resistance, a type of friction, or fluid resistance, another type of friction or fluid friction) is a force ... more

Power (aerodynamic drag)

In fluid dynamics, drag (sometimes called air resistance, a type of friction, or fluid resistance, another type of friction or fluid friction) is a force ... more

Drag equation ( for fluids)

Drag (sometimes called air resistance, a type of friction, or fluid resistance, another type of friction or fluid friction) refers to forces acting ... more

Sears–Haack body (Drag Coefficient related to the Volume)

The Sears–Haack body is the shape with the lowest theoretical wave drag in supersonic flow, for a given body length and given volume. The mathematical ... more

Sears–Haack body (Drag Coefficient related to the maximum Radius)

The Sears–Haack body is the shape with the lowest theoretical wave drag in supersonic flow, for a given body length and given volume. The mathematical ... more

Wind turbine yaw error

All wind turbines operate with a yaw error. In this case an extreme yaw error of 30 degrees is assumed. The flapwise blade root bending moment due to that ... more

Ballistic Coefficient - using corss-sectional area

In ballistics, the ballistic coefficient (BC) of a body is a measure of its ability to overcome air resistance in flight. It is inversely proportional to ... more

Terminal velocity (under buoyancy force)

The terminal velocity of a falling object is the velocity of the object when the sum of the drag force and buoyancy equals the downward force of gravity ... more

Worksheet 290

Find the terminal velocity of an 85-kg skydiver falling in a spread-eagle position.

Terminal Velocity (without considering buoyancy)
Rectangle area

where Vt is the terminal velocity, m is the mass of the skydiver, g is the acceleration due to gravity, Cd is the drag coefficient, ρ is the density of the fluid through which the object is falling, and A is the projected area of the object.

Reference : OpenStax College,College Physics. OpenStax College. 21 June 2012.
http://openstaxcollege.org/textbooks/college-physics
Creative Commons License : http://creativecommons.org/licenses/by/3.0/

where h is skydiver height and w the width at “spread-eagle” position

Sears–Haack body (Wave Drag related to the Volume)

The Sears–Haack body is the shape with the lowest theoretical wave drag in supersonic flow, for a given body length and given volume. The mathematical ... more

Sears–Haack body (Wave Drag related to the maximum Radius)

The Sears–Haack body is the shape with the lowest theoretical wave drag in supersonic flow, for a given body length and given volume. The mathematical ... more

Terminal Velocity (without considering buoyancy)

Terminal velocity is simply the fastest speed that a falling object can reach in a certain circumstance. Different objects have different terminal ... more

Leadscrew Frictional Torque of the Thrust Collar

A leadscrew (or lead screw), also known as a power screw or translation screw, is a screw used as a linkage in a machine, to translate turning motion into ... more

Drag coefficient for a spherical object in creeping flow

In fluid dynamics, the drag coefficient is a dimensionless quantity that is used to quantify the drag or resistance of an object in a fluid environment, ... more

Ballistic Coefficient - using body length

In ballistics, the ballistic coefficient (BC) of a body is a measure of its ability to overcome air resistance in flight. It is inversely proportional to ... more

...can't find what you're looking for?

Create a new formula