'

Search results

Found 1283 matches
Hagen-Poiseuille Equation

In fluid dynamics, the Hagen–Poiseuille equation, also known as the Hagen–Poiseuille law, Poiseuille law or Poiseuille equation, is a physical law that ... more

Hydraulic conductivity (Falling-head method)

Hydraulic conductivity is a property of vascular plants, soils and rocks, that describes the ease with which a fluid (usually water) can move through pore ... more

Air-to-cloth ratio

The air-to-cloth ratio is the volumetric flow rate of air flowing through a dust collector’s inlet duct divided by the total cloth area in the ... more

Hydraulic conductivity (Constant-head method)

Hydraulic conductivity is a property of vascular plants, soils and rocks, that describes the ease with which a fluid (usually water) can move through pore ... more

Darcy's Law for membrane performance application

The selection of synthetic membranes for a targeted separation process is usually based on few requirements. Membranes have to provide enough mass transfer ... more

Wetted perimeter

The wetted perimeter is the perimeter of the cross sectional area that is “wet”. The term wetted perimeter is common in civil engineering, ... more

Darcy's law (simplified)

Darcy’s law states that the volume of flow of the pore fluid through a porous medium per unit time is proportional to the rate of change of excess ... more

Borda–Carnot equation (for open channel flows)

In fluid dynamics the Borda–Carnot equation is an empirical description of the mechanical energy losses of the fluid due to a (sudden) flow expansion. The ... more

Borda–Carnot equation (sudden expansion of a horizontal pipe)

In fluid dynamics the Borda–Carnot equation is an empirical description of the mechanical energy losses of the fluid due to a (sudden) flow expansion. The ... more

Borda–Carnot equation ( in relation to Bernoulli's principle)

Borda–Carnot equation is an empirical description of the mechanical energy losses of the fluid due to a (sudden) flow expansion. It describes how the total ... more

...can't find what you're looking for?

Create a new formula