'

Search results

Found 1181 matches
Ripple voltage (half-wave rectifier))

The most common meaning of ripple in electrical science is the small unwanted residual periodic variation of the direct current (DC) output of a power ... more

Precession (Torque-free)

Precession is a change in the orientation of the rotational axis of a rotating body. In an appropriate reference frame it can be defined as a change in the ... more

Gravity Acceleration by Altitude

The gravity of Earth, which is denoted by g, refers to the acceleration that the Earth imparts to objects on or near its surface due to gravity. In SI ... more

R-value (insulation)

In building and construction,the R-value is a measure of how well an object, per unit of its exposed area, resists conductive flow of heat: the greater the ... more

Law of Conservation of Linear Momentum - 3 particles example

In classical mechanics, linear momentum or translational momentum (pl. momenta; SI unit kg m/s, or equivalently, N s) is the product of the mass and ... more

Drainage Hooghoudt's equation

A drainage equation is an equation describing the relation between depth and spacing of parallel subsurface drains, depth of the watertable, depth and ... more

R-value (insulation) of a multi-layered installation

Formula first contributed by:
zfyl

The R-value is a measure of thermal resistance, or ability of heat to transfer from hot ... more

Miles Equation

In 1954, Miles developed his version of this equation for GRMS as he was researching fatigue failure of aircraft structural ... more

Worksheet 306

Calculate the force the biceps muscle must exert to hold the forearm and its load as shown in the figure below, and compare this force with the weight of the forearm plus its load. You may take the data in the figure to be accurate to three significant figures.


(a) The figure shows the forearm of a person holding a book. The biceps exert a force FB to support the weight of the forearm and the book. The triceps are assumed to be relaxed. (b) Here, you can view an approximately equivalent mechanical system with the pivot at the elbow joint

Strategy

There are four forces acting on the forearm and its load (the system of interest). The magnitude of the force of the biceps is FB, that of the elbow joint is FE, that of the weights of the forearm is wa , and its load is wb. Two of these are unknown FB, so that the first condition for equilibrium cannot by itself yield FB . But if we use the second condition and choose the pivot to be at the elbow, then the torque due to FE is zero, and the only unknown becomes FB .

Solution

The torques created by the weights are clockwise relative to the pivot, while the torque created by the biceps is counterclockwise; thus, the second condition for equilibrium (net Ï„ = 0) becomes

Force (Newton's second law)
Torque
Force (Newton's second law)
Torque

Note that sin θ = 1 for all forces, since θ = 90º for all forces. This equation can easily be solved for FB in terms of known quantities,yielding. Entering the known values gives

Mechanical equilibrium - 3=3 Torque example

which yields

Torque
Addition

Now, the combined weight of the arm and its load is known, so that the ratio of the force exerted by the biceps to the total weight is

Division

Discussion

This means that the biceps muscle is exerting a force 7.38 times the weight supported.

Reference : OpenStax College,College Physics. OpenStax College. 21 June 2012.
http://openstaxcollege.org/textbooks/college-physics
Creative Commons License : http://creativecommons.org/licenses/by/3.0/

Data Link Design

Eb/N0 (the energy per bit to noise power spectral density ratio) is an important parameter in digital communication or data transmission. It is a ... more

...can't find what you're looking for?

Create a new formula