'

Search results

Found 807 matches
Cycloid ( parametric equation Y-coordinate)

A cycloid is the curve traced by a point on the rim of a circular wheel as the wheel rolls along a straight line without slippage. It is an example of a ... more

Cycloid ( parametric equation X- coordinate)

A cycloid is the curve traced by a point on the rim of a circular wheel as the wheel rolls along a straight line without slippage. It is an example of a ... more

Roll angular inertia (Automobile handling)

Automobile handling and vehicle handling are descriptions of the way wheeled vehicles perform transverse to their direction of motion, particularly during ... more

Semi-Elliptic Laminated Leaf Spring (Stiffness)

Leaf spring, commonly used for the suspension in wheeled vehicles. The term is also used to refer to a bundled set of leaf springs. As the spring flexes, ... more

Horizontal Curve - Allowable radius

The allowable radius for a horizontal curve can then be determined by knowing the intended design velocity, the coefficient of friction, and the allowed ... more

Radius

In classical geometry, a radius of a circle or sphere is any of the line segments from its center to its perimeter, and in more modern usage, it is also ... more

Radius of the circle with perimeter (circumference)

In classical geometry, a radius of a circle or sphere is any of the line segments from its center to its perimeter, and in more modern usage, it is also ... more

Regenerative brake (KERS Flywheel energy)

A regenerative brake is an energy recovery mechanism which slows a vehicle or object by converting its kinetic energy into a form which can be either used ... more

Worksheet 289

Prior to manned space flights, rocket sleds were used to test aircraft, missile equipment, and physiological effects on human subjects at high speeds. They consisted of a platform that was mounted on one or two rails and propelled by several rockets. Calculate the magnitude of force exerted by each rocket, called its thrust T , for the four-rocket propulsion system shown in the Figure below. The sled’s initial acceleration is 49 m/s 2, the mass of the system is 2100 kg, and the force of friction opposing the motion is known to be 650 N.

A sled experiences a rocket thrust that accelerates it to the right.Each rocket creates an identical thrust T . As in other situations where there is only horizontal acceleration, the vertical forces cancel. The ground exerts an upward force N on the system that is equal in magnitude and opposite in direction to its weight,w.The system here is the sled, its rockets, and rider, so none of the forces between these objects are considered. The arrow representing friction ( f ) is drawn larger than scale.
Assumptions: The mass of the Sled remains steady throughout the operation

Strategy

Although there are forces acting vertically and horizontally, we assume the vertical forces cancel since there is no vertical acceleration. This leaves us with only horizontal forces and a simpler one-dimensional problem. Directions are indicated with plus or minus signs, with right taken as the positive direction. See the free-body diagram in the figure.

Solution

Since acceleration, mass, and the force of friction are given, we start with Newton’s second law and look for ways to find the thrust of the engines. Since we have defined the direction of the force and acceleration as acting “to the right,” we need to consider only the magnitudes of these quantities in the calculations. Hence we begin with

Force (Newton's second law)

Fnet is the net force along the horizontal direction, m is the rocket’s mass and a the acceleration.

We can see from the Figure at the top, that the engine thrusts add, while friction opposes the thrust.

Subtraction

Tt is the total thrust from the 4 rockets, Fnet the net force along the horizontal direction and Ff the force of friction.

Finally, since there are 4 rockets, we calculate the thrust that each one provides:

Division

T is the individual Thrust of each engine, b is the number of rocket engines

Reference : OpenStax College,College Physics. OpenStax College. 21 June 2012.
http://openstaxcollege.org/textbooks/college-physics
Creative Commons License : http://creativecommons.org/licenses/by/3.0/

Minimum railway curve radius (by the track gauge and the cant)

The minimum railway curve radius, the shortest allowable design radius for railway tracks under a particular set of conditions.
Track gauge is a ... more

...can't find what you're looking for?

Create a new formula