'

Search results

Found 1828 matches
Hydraulic diameter

For flow in a pipe or a sphere moving in a fluid the internal diameter is generally used today. Other shapes such as rectangular pipes or non-spherical ... more

Worksheet 333

A typical small rescue helicopter, like the one in the Figure below, has four blades, each is 4.00 m long and has a mass of 50.0 kg. The blades can be approximated as thin rods that rotate about one end of an axis perpendicular to their length. The helicopter has a total loaded mass of 1000 kg. (a) Calculate the rotational kinetic energy in the blades when they rotate at 300 rpm. (b) Calculate the translational kinetic energy of the helicopter when it flies at 20.0 m/s, and compare it with the rotational energy in the blades. (c) To what height could the helicopter be raised if all of the rotational kinetic energy could be used to lift it?


The first image shows how helicopters store large amounts of rotational kinetic energy in their blades. This energy must be put into the blades before takeoff and maintained until the end of the flight. The engines do not have enough power to simultaneously provide lift and put significant rotational energy into the blades.
The second image shows a helicopter from the Auckland Westpac Rescue Helicopter Service. Over 50,000 lives have been saved since its operations beginning in 1973. Here, a water rescue operation is shown. (credit: 111 Emergency, Flickr)

Strategy

Rotational and translational kinetic energies can be calculated from their definitions. The last part of the problem relates to the idea that energy can change form, in this case from rotational kinetic energy to gravitational potential energy.

Solution for (a)

We must convert the angular velocity to radians per second and calculate the moment of inertia before we can find Er . The angular velocity ω for 1 r.p.m is

Angular velocity

and for 300 r.p.m

Multiplication

The moment of inertia of one blade will be that of a thin rod rotated about its end.

Moment of Inertia - Rod end

The total I is four times this moment of inertia, because there are four blades. Thus,

Multiplication

and so The rotational kinetic energy is

Rotational energy

Solution for (b)

Translational kinetic energy is defined as

Kinetic energy ( related to the object 's velocity )

To compare kinetic energies, we take the ratio of translational kinetic energy to rotational kinetic energy. This ratio is

Division

Solution for (c)

At the maximum height, all rotational kinetic energy will have been converted to gravitational energy. To find this height, we equate those two energies:

Potential energy

Discussion

The ratio of translational energy to rotational kinetic energy is only 0.380. This ratio tells us that most of the kinetic energy of the helicopter is in its spinning blades—something you probably would not suspect. The 53.7 m height to which the helicopter could be raised with the rotational kinetic energy is also impressive, again emphasizing the amount of rotational kinetic energy in the blades.

Reference : OpenStax College,College Physics. OpenStax College. 21 June 2012.
http://openstaxcollege.org/textbooks/college-physics
Creative Commons License : http://creativecommons.org/licenses/by/3.0/

Drag force on a rigid cylinder when velocity is perpendicular to its axis(Slender-body theory)

n fluid dynamics and electrostatics, slender-body theory is a methodology that can be used to take advantage of the slenderness of a body to obtain an ... more

Drag force on a rigid cylinder when velocity is parallel to its axis(Slender-body theory)

In fluid dynamics and electrostatics, slender-body theory is a methodology that can be used to take advantage of the slenderness of a body to obtain an ... more

Mean anomaly - function of gravitational parameter

In celestial mechanics, the mean anomaly is an angle used in calculating the position of a body in an elliptical orbit in the classical two-body problem. ... more

Distance of L1 and L2 Langarian points(M2<<M1)

In celestial mechanics, the Lagrangian points (also Lagrange points, L-points, or libration points) are positions in an orbital configuration of two large ... more

Hydrostatic weighing

Hydrostatic weighing, also referred to as “underwater weighing,” “hydrostatic body composition analysis,” and ... more

Distance of L3 Langarian point

In celestial mechanics, the Lagrangian points (also Lagrange points, L-points, or libration points) are positions in an orbital configuration of two large ... more

Thrust (with cross section area)

Thrust is a reaction force described quantitatively by Newton’s second and third laws. When a system expels or accelerates mass in one direction, the ... more

Allowable Strength Design Load combination (eq8)

In structural engineering, a structure is a body or combination of pieces of rigid bodies in space to form a fitness system for supporting loads. ... more

...can't find what you're looking for?

Create a new formula