'

Search results

Found 815 matches
Tensile Stress Area

Bolted joints are one of the most common elements in construction and machine design. They consist of fasteners that capture and join other parts, and are ... more

Coefficient of restitution ( two objects)

The coefficient of restitution (COR) of two colliding objects is typically a positive real number between 0.0 and 1.0 ... more

Planet Formation Equation - "Clearing the neighbourhood"

“Clearing the neighbourhood around its orbit” is a criterion for a celestial body to be considered a planet in the Solar System. This was one ... more

Surface Feet per Minute (SFM)

Surface feet per minute (SFPM or SFM) is the combination of a physical quantity (surface speed) and an ... more

Spindle Speed

Surface feet per minute (SFPM or SFM) is the combination of a physical quantity (surface speed) and an ... more

Mass Ratio - Rockets

In aerospace engineering, mass ratio is a measure of the efficiency of a rocket. It describes how much more massive the vehicle is with propellant than ... more

Worksheet 333

A typical small rescue helicopter, like the one in the Figure below, has four blades, each is 4.00 m long and has a mass of 50.0 kg. The blades can be approximated as thin rods that rotate about one end of an axis perpendicular to their length. The helicopter has a total loaded mass of 1000 kg. (a) Calculate the rotational kinetic energy in the blades when they rotate at 300 rpm. (b) Calculate the translational kinetic energy of the helicopter when it flies at 20.0 m/s, and compare it with the rotational energy in the blades. (c) To what height could the helicopter be raised if all of the rotational kinetic energy could be used to lift it?


The first image shows how helicopters store large amounts of rotational kinetic energy in their blades. This energy must be put into the blades before takeoff and maintained until the end of the flight. The engines do not have enough power to simultaneously provide lift and put significant rotational energy into the blades.
The second image shows a helicopter from the Auckland Westpac Rescue Helicopter Service. Over 50,000 lives have been saved since its operations beginning in 1973. Here, a water rescue operation is shown. (credit: 111 Emergency, Flickr)

Strategy

Rotational and translational kinetic energies can be calculated from their definitions. The last part of the problem relates to the idea that energy can change form, in this case from rotational kinetic energy to gravitational potential energy.

Solution for (a)

We must convert the angular velocity to radians per second and calculate the moment of inertia before we can find Er . The angular velocity ω for 1 r.p.m is

Angular velocity

and for 300 r.p.m

Multiplication

The moment of inertia of one blade will be that of a thin rod rotated about its end.

Moment of Inertia - Rod end

The total I is four times this moment of inertia, because there are four blades. Thus,

Multiplication

and so The rotational kinetic energy is

Rotational energy

Solution for (b)

Translational kinetic energy is defined as

Kinetic energy ( related to the object 's velocity )

To compare kinetic energies, we take the ratio of translational kinetic energy to rotational kinetic energy. This ratio is

Division

Solution for (c)

At the maximum height, all rotational kinetic energy will have been converted to gravitational energy. To find this height, we equate those two energies:

Potential energy

Discussion

The ratio of translational energy to rotational kinetic energy is only 0.380. This ratio tells us that most of the kinetic energy of the helicopter is in its spinning blades—something you probably would not suspect. The 53.7 m height to which the helicopter could be raised with the rotational kinetic energy is also impressive, again emphasizing the amount of rotational kinetic energy in the blades.

Reference : OpenStax College,College Physics. OpenStax College. 21 June 2012.
http://openstaxcollege.org/textbooks/college-physics
Creative Commons License : http://creativecommons.org/licenses/by/3.0/

Optimum HDTV viewing distance

Optimum HDTV viewing distance is the distance that provides the viewer with the optimum immersive visual ... more

Trip distribution zonal interchange model (related to trip origins and destinations)

Trip distribution (or destination choice or zonal interchange analysis) is the second component (after trip generation, but before mode choice and route ... more

Roll-Off - First Order

Roll-off is the steepness of a transmission function with frequency, particularly in electrical network analysis, and most especially in connection with ... more

...can't find what you're looking for?

Create a new formula