'

Search results

Found 824 matches
Transverse wave velocity (shear wave)

A transverse (shear) wave is a moving wave that consists of oscillations occurring perpendicular (or right angled) to the direction of energy transfer. For ... more

Strain energy release (Irwin's modification for plane strain)

A fracture is the separation of an object or material into two, or more, pieces under the action of stress.There are three ways of applying a force to ... more

Elastic modulus of a contact area between a sphere and an elastic half-space

Contact mechanics is the study of the deformation of solids that touch each other at one or more points. Hertzian contact stress refers to the localized ... more

Longitudinal waves velocity (compressional waves)

Longitudinal waves, are waves in which the displacement of the medium is in the same direction as, or the opposite direction to, the direction of travel of ... more

Relation among Young's modulus, Bulk modulus and Poisson's ratio

For homogeneous isotropic materials simple relations exist between elastic constants (Young’s modulus E, bulk modulus K, and Poisson’s ratio ν) ... more

Total force on a contact area between a rigid conical indenter and an elastic half-space related to the contact radius

Contact mechanics is the study of the deformation of solids that touch each other at one or more points. Hertzian contact stress refers to the localized ... more

Total force on a contact area between a rigid conical indenter and an elastic half-space related to the total depth

ontact mechanics is the study of the deformation of solids that touch each other at one or more points. Hertzian contact stress refers to the localized ... more

Critical Buckling Stress of a Column with Buckling Coefficient

Column or pillar in architecture and structural engineering is a structural element that transmits, through compression, the weight of the structure above ... more

Micro chevron (MC) test (critical energy release rate)

The wafer bond characterization is based on different methods and tests. Wafer bonds are commonly characterized by three important encapsulation ... more

Maximum Spring Force (Fully Compressed)

A spring is an elastic object used to store mechanical energy. Springs are usually made out of spring steel. Small springs can be wound from pre-hardened ... more

Critical Buckling Compressive Loading of a Plate

In science, buckling is a mathematical instability that leads to a failure mode.

When a structure is subjected to compressive stress, buckling may ... more

Speed of Sound in Solids - long rods

The speed of sound is the distance travelled per unit of time by a sound wave propagating through an elastic medium.
The speed of sound for ... more

Shear coefficient (For solid circular cross-section beam)

Timoshenko beam model takes into account shear deformation and rotational inertia effects, making it suitable for describing the behavior of short sandwich ... more

Shear coefficient (For solid rectangular cross-section beam)

Timoshenko beam model takes into account shear deformation and rotational inertia effects, making it suitable for describing the behavior of short sandwich ... more

Rotational stiffness ( depended on rigidity modulus of the material)

Stiffness is the rigidity of an object — the extent to which it resists deformation in response to an applied force. In general, stiffness is not the same ... more

Poisson's Ratio

Poisson’s ratio, named after Siméon Poisson, is the negative ratio of transverse to axial strain. When a material is compressed in one direction, it ... more

Strain energy release (Irwin's modification for plane stress)

A fracture is the separation of an object or material into two, or more, pieces under the action of stress.There are three ways of applying a force to ... more

Cantilever Euler Beam - Maximum Displacement

Euler–Bernoulli beam theory (also known as engineer’s beam theory or classical beam theory) is a simplification of the linear theory of elasticity ... more

Cantilever Euler Beam - Displacement

Euler–Bernoulli beam theory (also known as engineer’s beam theory or classical beam theory) is a simplification of the linear theory of elasticity ... more

Shear Modulus

In materials science, shear modulus or modulus of rigidity, denoted by G, or sometimes S or μ, is defined as the ratio of shear stress to the shear strain. ... more

Curvature of a Bimetallic Beam

A bimetallic strip is used to convert a temperature change into mechanical displacement. The strip consists of two strips of different metals which expand ... more

Young's Modulus

Young’s modulus, also known as the Tensile modulus or elastic modulus, is a measure of the stiffness of an elastic isotropic material and is a ... more

Worksheet 316

Calculate the change in length of the upper leg bone (the femur) when a 70.0 kg man supports 62.0 kg of his mass on it, assuming the bone to be equivalent to a uniform rod that is 45.0 cm long and 2.00 cm in radius.

Strategy

The force is equal to the weight supported:

Force (Newton's second law)

and the cross-sectional area of the upper leg bone(femur) is:

Disk area

To find the change in length we use the Young’s modulus formula. The Young’s modulus reference value for a bone under compression is known to be 9×109 N/m2. Now,all quantities except ΔL are known. Thus:

Young's Modulus

Discussion

This small change in length seems reasonable, consistent with our experience that bones are rigid. In fact, even the rather large forces encountered during strenuous physical activity do not compress or bend bones by large amounts. Although bone is rigid compared with fat or muscle, several of the substances listed in Table 5.3(see reference below) have larger values of Young’s modulus Y . In other words, they are more rigid.

Reference:
This worksheet is a modified version of Example 5.4 page 188 found in :
OpenStax College,College Physics. OpenStax College. 21 June 2012.
http://openstaxcollege.org/textbooks/college-physics
Creative Commons License : http://creativecommons.org/licenses/by/3.0/

Maszara model DCB test (The compliance of a symmetric DCB speciment)

Wafer bonds are commonly characterized by three important encapsulation parameters: bond strength, hermeticity of encapsulation and bonding induced stress. ... more

Maszara model DCB test (surface fracture energy)

Wafer bonds are commonly characterized by three important encapsulation parameters: bond strength, hermeticity of encapsulation and bonding induced ... more

Critical buckling stress of a column

Column or pillar in architecture and structural engineering is a structural element that transmits, through compression, the weight of the structure above ... more

P-wave Velocity

P-waves are a type of elastic wave, called seismic waves in seismology, that can travel through a continuum. The continuum is made up of gases (as sound ... more

Speed of sound in three-dimensional solids (pressure waves)

The speed of sound is the distance travelled per unit of time by a sound wave propagating through an elastic medium. Sound travels faster in liquids and ... more

S-wave Velocity

A type of elastic wave, the S-wave, secondary wave, or shear wave (sometimes called an elastic S-wave) is one of the two main types of elastic body waves, ... more

Force exerted by stretched or contracted material

In continuum mechanics, stress is a physical quantity that expresses the internal forces that neighbouring particles of a continuous material exert on each ... more

...can't find what you're looking for?

Create a new formula