'

Search results

Found 1345 matches
Properties of concrete - modulus of elasticity for normal weight concrete

The modulus of elasticity of concrete is a function of the modulus of elasticity of the aggregates and the cement matrix and their relative proportions. ... more

Electrical mobility

Electrical mobility is the ability of charged particles (such as electrons or protons) to move through a medium in response to an electric field that is ... more

X-Coordinate of the involute of a circle

An involute (also known as evolvent) is a curve obtained from another given curve by attaching an imaginary taut string to the given curve and tracing its ... more

Acousto-optic deflector

An acousto-optic deflector spatially controls the optical beam. In the operation of an Acoustic-optic deflector the power driving the acoustic transducer ... more

Mechanical equilibrium - 3=3 Force example

A mechanical equilibrium is a state in which a momentum coordinate of a particle, rigid body, or dynamical system is conserved. Usually this refers to ... more

Potential energy

Potential energy is the energy of a body or a system with respect to the position of the body or the arrangement of the particles of the system. The amount ... more

Y-Coordinate of the involute of a circle

An involute (also known as evolvent) is a curve obtained from another given curve by attaching an imaginary taut string to the given curve and tracing its ... more

Electrical Impedances - In Series

Electrical impedance is the measure of the opposition that a circuit presents to a current when a voltage is applied. The term complex impedance may be ... more

Electrical Impedances - In Parallel

Electrical impedance is the measure of the opposition that a circuit presents to a current when a voltage is applied. The term complex impedance may be ... more

Worksheet 306

Calculate the force the biceps muscle must exert to hold the forearm and its load as shown in the figure below, and compare this force with the weight of the forearm plus its load. You may take the data in the figure to be accurate to three significant figures.


(a) The figure shows the forearm of a person holding a book. The biceps exert a force FB to support the weight of the forearm and the book. The triceps are assumed to be relaxed. (b) Here, you can view an approximately equivalent mechanical system with the pivot at the elbow joint

Strategy

There are four forces acting on the forearm and its load (the system of interest). The magnitude of the force of the biceps is FB, that of the elbow joint is FE, that of the weights of the forearm is wa , and its load is wb. Two of these are unknown FB, so that the first condition for equilibrium cannot by itself yield FB . But if we use the second condition and choose the pivot to be at the elbow, then the torque due to FE is zero, and the only unknown becomes FB .

Solution

The torques created by the weights are clockwise relative to the pivot, while the torque created by the biceps is counterclockwise; thus, the second condition for equilibrium (net τ = 0) becomes

Force (Newton's second law)
Torque
Force (Newton's second law)
Torque

Note that sin θ = 1 for all forces, since θ = 90º for all forces. This equation can easily be solved for FB in terms of known quantities,yielding. Entering the known values gives

Mechanical equilibrium - 3=3 Torque example

which yields

Torque
Addition

Now, the combined weight of the arm and its load is known, so that the ratio of the force exerted by the biceps to the total weight is

Division

Discussion

This means that the biceps muscle is exerting a force 7.38 times the weight supported.

Reference : OpenStax College,College Physics. OpenStax College. 21 June 2012.
http://openstaxcollege.org/textbooks/college-physics
Creative Commons License : http://creativecommons.org/licenses/by/3.0/

...can't find what you're looking for?

Create a new formula