'

Search results

Found 1179 matches
Inductive Reactance

In electrical and electronic systems, reactance is the opposition of a circuit element to a change of electric current or voltage, due to that ... more

Worksheet 306

Calculate the force the biceps muscle must exert to hold the forearm and its load as shown in the figure below, and compare this force with the weight of the forearm plus its load. You may take the data in the figure to be accurate to three significant figures.


(a) The figure shows the forearm of a person holding a book. The biceps exert a force FB to support the weight of the forearm and the book. The triceps are assumed to be relaxed. (b) Here, you can view an approximately equivalent mechanical system with the pivot at the elbow joint

Strategy

There are four forces acting on the forearm and its load (the system of interest). The magnitude of the force of the biceps is FB, that of the elbow joint is FE, that of the weights of the forearm is wa , and its load is wb. Two of these are unknown FB, so that the first condition for equilibrium cannot by itself yield FB . But if we use the second condition and choose the pivot to be at the elbow, then the torque due to FE is zero, and the only unknown becomes FB .

Solution

The torques created by the weights are clockwise relative to the pivot, while the torque created by the biceps is counterclockwise; thus, the second condition for equilibrium (net τ = 0) becomes

Force (Newton's second law)
Torque
Force (Newton's second law)
Torque

Note that sin θ = 1 for all forces, since θ = 90º for all forces. This equation can easily be solved for FB in terms of known quantities,yielding. Entering the known values gives

Mechanical equilibrium - 3=3 Torque example

which yields

Torque
Addition

Now, the combined weight of the arm and its load is known, so that the ratio of the force exerted by the biceps to the total weight is

Division

Discussion

This means that the biceps muscle is exerting a force 7.38 times the weight supported.

Reference : OpenStax College,College Physics. OpenStax College. 21 June 2012.
http://openstaxcollege.org/textbooks/college-physics
Creative Commons License : http://creativecommons.org/licenses/by/3.0/

Uniform Circular Motion position (Y - coordinate)

In physics, circular motion is a movement of an object along the circumference of a circle or rotation along a circular path. It can be uniform, with ... more

Uniform Circular Motion position (X - coordinate)

In physics, circular motion is a movement of an object along the circumference of a circle or rotation along a circular path. It can be uniform, with ... more

Solar Cell - Fill Factor

Solar cell efficiency is the ratio of the electrical output of a solar cell to the incident energy in the form of sunlight. The energy conversion ... more

Thermal efficiency of a heat engine

Heat engines transform thermal energy, or heat into mechanical energy, or work. They cannot do this task perfectly, so some of the input heat energy is not ... more

Buckling Coefficient

In science, buckling is a mathematical instability that leads to a failure mode.

When a structure is subjected to compressive stress, buckling may ... more

Electrical conductance (related to the material and the shape of the conductor)

In physics and electrical engineering, a conductor is an object or type of material that permits the flow of electrical current in one or more directions. ... more

Hooke's Law (spring)

Hooke’s Law of elasticity is an approximation that states that the amount by which a material body is deformed (the strain) is linearly related to ... more

Vertical Curve - Stopping Sight Distance

Sight distance is dependent on the type of curve used and the design speed. For crest curves, sight distance is limited by the curve itself, as the curve ... more

...can't find what you're looking for?

Create a new formula